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Metagenomics History

® Term first use in 1998 paper by Handelsman et al.
Chem Biol. 1998 Oct;5(10):R245-9. Molecular
biological access to the chemistry of unknown sail
microbes: a new frontier for natural products

® (Collective genomes of microbes in the soil termed
the “soil metagenome”

® (Good review is Metagenomics: Application of
Genomics to Uncultured Microorganisms by
Handelsman Microbiol Mol Biol Rev. 2004
December; 68(4): 669-685.
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Extremely halophilic archaea contain retinal-binding integral membrane pro-
teins called bacteriorhodopsins that function as light-driven proton pumps. So
far, bacteriorhodopsins capable of generating a chemiosmotic membrane
potential in response to light have been demonstrated only in halophilic archaea.
We describe here a type of rhodopsin derived from bacteria that was discovered
through genomic analyses of naturally occuring marine bacterioplankton. The
bacterial rhodopsin was encoded in the genome of an uncultivated -
proteobacterium and shared highest amino acid sequence similarity with
archaeal rhodopsins. The protein was functionally expressed in Escherichia coli
and bound retinal to form an active, light-driven proton pump. The new
rhodopsin ex- hibited a photochemical reaction cycle with intermediates and
kinetics characteristic of archaeal proton-pumping rhodopsins. Our results
demonstrate that archaeal-like rhodopsins are broadly distributed among
different taxa, including members of the domain Bacteria. Our data also
indicate that a previously unsuspected mode of bacterially mediated light-driven
energy generation may commonly occur in oceanic surface waters worldwide.
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Fig. 1. (A) Phylogenetic tree of bacterial 165 rRNA gene sequences,
including that encoded on the 130-kb bacterioplankton BAC clone

(EBAC31A08) (16).
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The 16S ribosomal RNA neighbor-joining tree was
constructed on the basis of 1256 homologous positions
by the “neighbor” program of the PHYLIP package [J.
Felsenstein, Methods Enzymol. 266,418 (1996)]. DNA
distances were calculated with the Kimura’s 2-
parameter method.
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Fig. 1. (B) Phylogenetic analysis of proteorhodop- sin with archaeal (BR, HR, and SR prefixes) and
Neurospora crassa (NOP1 prefix) rhodopsins (/6). Nomenclature: Name_Species.abbreviation_Genbank.gi
(HR, halorhodopsin; SR, sensory rhodopsin; BR, bacteriorhodopsin). Halsod, Halorubrum sodomense;
Halhal, Halobacterium salinarum (halo- bium); Halval, Haloarcula vallismortis; Natpha, Natronomonas
pharaonis; Halsp, Halobacterium sp; Neucra, Neurospora crassa.



The proteorhodopsin tree was constructed on the basis of the archaeal
rhodopsin alignment used by Mukohata et al. [Y. Mukohata, K. Thara, T.
Tamura, Y. Sugiyama, J. Bio- chem. ( Tokyo) 125, 649 (1999)] and the
neighbor- joining method as implemented in the neighbor pro- gram of
the PHYLIP package. The numbers at forks indicate the percent of
bootstrap replications (out of 1000) in which the given branching was
observed. The least-square method (the Kitsch program of PHYLIP) and
the maximum likelihood method (the Puzzle program) produced trees
with essentially identical topologies, whereas the protein parsimony
method (the Protpars program of PHYLIP) placed proteorhodopsin
within the sensory rhodopsin cluster. The Yro/Hsp30 subfamilies
sequences (6) were omitted from the phylogenetic analysis to avoid the
effect of long branch attraction.



Cloning of proteorhodopsin. Sequence analysis of a
130-kb genomic fragment that encoded the ribosomal
RNA (rRNA) operon from an uncultivated member of
the marine g-Proteobacteria (that 1s, the “SAR&6”
group) (8, 9) (Fig. 1A) also revealed an open reading
frame (ORF) encoding a putative rhodopsin (referred
to here as proteorhodopsin) (10).



Cloning of proteorhodopsin. Sequence analysis of a
130-kb genomic fragment that encoded the ribosomal
RNA (rRNA) operon from an uncultivated member of
the marine g-Proteobacteria (that is, the “SARE6”
group) (8, 9) (Fig. 1A) also revealed an open reading
frame (ORF) encoding a putative rhodopsin (referred
to here as proteorhodopsin) (10).

8. T. D. Mullins, T. B. Britcshgi, R. L. Krest, S. J. Giovan-
noni, Limnol. Oceanogr. 40, 148 (1995).
9. O. Béja et al., Environ. Microbiol., in press.
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Genetic comparisons reveal the same unknown bacterial lineages in
Atlantic and Pacific bacterioplankton communities

Thomas D. Mullins, Theresa B. Britschgi, Robin L. Krest, and Stephen J. Giovannoni'
Department of Microbiology, Oregon State University, Corvallis 97331

Abstract

The phylogenetic diversity of oligotrophic bacterioplankton communities was compared with 16S ribo-
somal RNA genes cloned from natural populations. The data reported here extend a previous analysis of a
bacterioplankton 16S rRNA clone library with 15 additional nucleic acid clone sequences, to provide in-
formation on 60 16S rDNA clones from hydrostation S in the Sargasso Sea. The data were compared to
partial sequences of 37 Bacterial 16S rDNA clones reported from a surface picoplankton population collected
at the Aloha station in the North Pacific gyre, and partial sequences of 29 Bacterial 16S rRNA clones obtained
from sites near Bermuda and the western California Current. The results support reports of diverse groups
of previously unknown a-proteobacteria, y-protcobacteria, and cyanobacteria in oceanic surface samples.
Three novel lineages (SAR 121, 125, 145) of proteobacteria were found. Several genes cloned from the Sargasso
Sea were nearly identical to genes cloned from the Pacific samples, suggesting that these previously unrec-
ognized bacteria groups (SAR11, SAR122, SAR86) are distributed widely in the surface waters of subtropical
oceans. Two gene clones closely matched nucleotide sequences from the cultivated bacterial species Photo-
bacterium phosphoreum and Alteromonas haloplanktis.



Marine Microbe Background

* IRNA PCR studies of marine microbes have been extensive

« Comparative analysis had revealed many lineages, some very
novel, some less so, that were dominant in many, if not all,
open ocean samples

» Lineages given names based on specific clones: e.g., SAR11,
SARS86, etc

14



Genetic diversity in Sargasso
Sea bacterioplankton

Stephen J. Giovannoni, Theresa B. Britschgi,
Craig L. Moyer & Katharine G. Field

http://www.nature.com/nature/journal/v345/n6270/abs/345060a0.htm|
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FIG. 1 Unrooted phylogenetic tree depicting relaticnships among Sargasso
Sea bacterioplankton 185 rRNAs. The analysis includes the 16S rRNA
sequences of two cultivated strains of marine cyanobacteria, WH8103 and
WH7805. The sequences of .clones SARG7 and SAR78 were identical to
those of SAR1 and SAR20; SAR77 differed at one position (not shown). A
total of 230 positions located at the 5’ region of the gene, including both
conserved and hypervariable domains, were included within the analysis
(E. coli positions 101-344). Phylogenetic trees were constructed by a dist-
ance matrix method®3242%,

METHODS. The picoplankton samples were collected in April by tangential
flow filtration on Durapore 0.1 um fluorocarbon membranes from a depth
of 1-2 m at hydrostation S (32°4' N 64°23’ W). The small subunit ribosomal
RNA genes were amplified from bulk picoptankton DNA by a modification of
the polymerase chain reaction?®, The reaction conditions were: 1 Kg template
DNA; 2" at 94°C, 2’ at 37 °C, 7’ at 72 °C; 30 cycles. The amplified genes
were cloned as BamHI/Pstl fragments inte M13 phage mp18 and sequenced
twice, once with inosine substituting for guanosine, using the dideoxy chain
termination method?2. The amplification primers {OX1 and 0X2) were de-
signed with a bias towards the cyancbacterial phyium of the -eubacteria.
Primers OX1 and OX2 are, respectively, 90% and 82% similar to eubacterial
consensus sequences. The sequences of the amplification primers are: OX1,
GTGCTGCAGAGAGTTYGATCCTGGCTAGG; OX2, CACGGATCCAAGGAGGT-
GATCCANCCNCACC, where the domain complementary to the coding region
is indicated in bold.
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FIG. 3 Phylogenetic relationships of SAR7 and SAR11 16S rDNA sequence
clusters to a collection of 165 rRNA sequences representing the oxygenic
phototroph®2® and a-purple eubacterial phyla®®. Four clones were sequenced
completely (SARBG, SAR7, SARL1 and SAR11) and used for the inference of
distant relationships. The tree was rooted using the sequences of Bacillus
subtilis and Heliobacterium chiorum®3°. The analysis was restricted to 900
sequence positions. Regions of uncertain homology between phyla, including
hypervariable domains, were excluded from this analysis. Hence, the variabil-
ity within the clusters (indicated by the hatched boxes) is about 0.01 similarity
units less in this figure than in Fig. 1. The 3'-terminal domain of the 16S
rRNAs was excluded from the analysis because of an internal BamH|
restriction site in clones SAR1 and SAR11 at position 1,190.
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Phylogenetic Analysis of a Natural Marine Bacterioplankton
Population by rRNA Gene Cloning and Sequencing

THERESA B. BRITSCHGI anp STEPHEN J. GIOVANNONI*
Department of Microbiology, Oregon State University, Corvallis, Oregon 97331
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FIG. 4. Phylogenetic tree showing relationships of the rDNA clones from the Sargasso Sea to representative, cultivated species (2, 6, 18,
30, 31, 32, 35, 40). Positions of uncertain homology in regions containing insertions and deletions were omitted from the analysis.
Evolutionary distances were calculated by the method of Jukes and Cantor (15), which corrects for the effects of superimposed mutations.
The phylogenetic tree was determined by a distance matrix method (20). The tree was rooted with the sequence of Bacillus subtilis (38).
Sequence data not referenced were provided by C. R. Woese and R. Rossen.
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Molecular diversity and ecology
of microbial plankton

Stephen J. Giovannoni' & Ulrich Sting/'

The history of microbial evolution in the oceans is probably as old as the history of life itself. In contrast to
terrestrial ecosystems, microorganisms are the main form of biomass in the oceans, and form some of the
largest populations on the planet. Theory predicts that selection should act more efficiently in large
populations. But whether microbial plankton populations harbour organisms that are models of adaptive
sophistication remains to be seen. Genome sequence data are piling up, but most of the key microbial
plankton clades have no cultivated representatives, and information about their ecological activities is sparse
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DelLong Lab

e Studying Sar86 and other marine plankton

® Note - published one of first genomic studies of
uncultured microbes - in 1996

JOURNAL OF BACTERIOLOGY, Feb. 1996, p. 591-599 Vol. 178, No. 3
0021-9193/96/$04.00-+0
Copyright © 1996, American Society for Microbiology

Characterization of Uncultivated Prokaryotes: Isolation and
Analysis of a 40-Kilobase-Pair Genome Fragment
from a Planktonic Marine Archaeon

JEFFEREY L. STEIN,"* TERENCE L. MARSH,* KE YING WU,? HIROAKI SHIZUYA,*
AND EDWARD F. DELONG?*



Delong Lab

1. Concentrate bacteria, digest protein and preserve high MW DNA

Agarose "noodle”
Proteinase - K, detergent

Y

93

2. Partially digest DNA and select 40 kbp fragments by
FFGE or by A-packaging (step 3)

3. Ligate to fosmid arms, package and transfect to E. coli.
Array library in microtiter plates.

TS

—- -

e
— —

4. Replica plate onto into high density filters

5. Probe and "walk" to
identify contiguous
fragments

FIG. 1. Flowchart depicting the construction and screening of an environ-
mental library from a mixed picoplankton sample. MW, molecular weight;

PFGE, pulsed-field gel electrophoresis. 23



Delong Lab

- e
&= a . i
" :
2. *
& »
Y e
- o
i o A >
4 Lk
B 2 “

FIG. 4. High-density filter replica of 2,304 fosmid clones containing approx-
imately 92 million bp of DNA cloned from the mixed picoplankton community.
The filter was probed with the labeled insert from clone 4B7 (dark spot). The
lack of other hybridizing clones suggests that contigs of 4B7 are absent from this
portion of the library. Similar experiments with the remainder of the library
yielded similar results.
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10. A subclone shotgun library was constructed from
BAC clone 31A08, and subclones were sequenced in
both directions on the MegaBACE 1000 capillary
array electrophoresis DNA sequencing instrument
(Molecular Dynamics, Sunnyvale, CA). The contigu-
ous sequence was assembled with SEQUENCHER

3.1.1 software (Gene Codes, Ann Arbor, Ml). The
sequence of the proteorhodopsin-containing contig

has been deposited in GenBank under accession num-
ber AF279106.
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10. A subclone shotgun library was constructed from
BAC clone 31A08, and subclones were sequenced in
both directions on the MegaBACE 1000 capillary
array electrophoresis DNA sequencing instrument
(Molecular Dynamics, Sunnyvale, CA). The contigu-
ous sequence was assembled with SEQUENCHER

3.1.1 software (Gene Codes, Ann Arbor, Ml). The
sequence of the proteorhodopsin-containing contig

has besn denasited in GenBank under accession num-
AF279106.
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GenBank growth statistics for both the traditional GenBank divisions and the WGS division are available from each release.

An annotated sample GenBank record for a Saccharomyces cerevisiae gene demonstrates many of the features of the GenBank flat file
format.

GenBank Resources
GenBank Home

Submission Types

Submission Tools
Search GenBank
Update GenBank Records




& NCBI  Resources (¥} How To ¥

GenBank Nucleotide [ AF279106

GenBank ¥ | Submit v | Genomes ¥ WGS v HTGs v | EST/GSS v | Metagenomes v TPA v TSA v  INSDC

GenBank Overview

What is GenBank?

GenBank ® is the NIH genetic sequence database, an annotated collection of all publicly available DNA sequences (Nucleic Acids Research,
2013 Jan;41(D1):D36-42). GenBank is part of the International Nucleotide Sequence Database Collaboration , which comprises the DNA
DataBank of Japan (DDBJ), the European Molecular Biology Laboratory (EMBL), and GenBank at NCBI. These three organizations
exchange data on a daily basis.

The complete release notes for the current version of GenBank are available on the NCBI ftp site. A new release is made every two months.
GenBank growth statistics for both the traditional GenBank divisions and the WGS division are available from each release.

An annotated sample GenBank record for a Saccharomyces cerevisiae gene demonstrates many of the features of the GenBank flat file
format.

GenBank Resources
GenBank Home

Submission Types

Submission Tools
Search GenBank
Update GenBank Records




GenBank ~

Uncultured marine gamma proteobacterium EBAC31A08 BAC sequence
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The inferred amino acid sequence of the proteorho-
dopsin showed statistically significant similarity to
archaeal rhodopsins (/7).



The inferred amino acid sequence of the proteorho-
dopsin showed statistically significant similarity to

archaeal rhodopsins (/7).

11.

The protein most similar to proteorhodopsin was the
sensory rhodopsin from Natronomonas pharaonis
and bacteriorhodopsin from Halobacterium halo-
bium, with a random expectation value of 2 X 10 '
and 30% identity in a 224 -amino acid alignment and
a random expectation value of 9 X 10 ¥ and 27%
identity over 228 amino acids, respectively.
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— Sensory Rhodopsin

Fig. 1. (B) Phylogenetic analysis of proteorhodop- sin with archaeal (BR, HR, and SR prefixes) and
Neurospora crassa (NOP1 prefix) rhodopsins (/6). Nomenclature: Name_Species.abbreviation_Genbank.gi
(HR, halorhodopsin; SR, sensory rhodopsin; BR, bacteriorhodopsin). Halsod, Halorubrum sodomense;
Halhal, Halobacterium salinarum (halo- bium); Halval, Haloarcula vallismortis; Natpha, Natronomonas
pharaonis; Halsp, Halobacterium sp; Neucra, Neurospora crassa.
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Bacteriorhodopsin and its relatives

(a)
PR— IHb. salinarum \
8.1 Hr. sp. aus-1 (= strain SG)
Hr. sodomense
62 18848 Hr. sp. aus-2
_c_smsal’:n mex H* pump
988 a. argentinensis
strain port
1800017, sallismortis /
188 998 Ha. mukohataei
‘ nD 68 Ht. sp. arg-4
‘ Hb. salinarum
Ht, sp. arg-4
1688 strain SG
Hr. sodomense

Nm. pharaonis Ci pump
strain shark

strain port

Ha. vallismortis

Hb. salinarum

strain SG

Hr. sodomense Sensor |
Ha. vallismortis

b, salinarum

Ha. vallismortis Sensor 11

Nm. pharaonis

Figure 3. Phylogenetic tree based on the amino acid sequences of 25 archaeal rhodopsins. (a) NJ-tree. The numbers at each node are clustering probabilities generated by
bootstrap resampling 1000 times. D1 and D2 represent gene duplication points. The four shaded rectangles indicate the speciation dates when halobacteria speciation occurred at
the genus level. (b) ML-tree. Log likelihood value for ML-tree was -6579.02 (best score) and that for topology of the NJ-tree was —6583.43. The stippled bars indicate the 95%
confidence limits. Both trees were tentatively rooted at the mid-point of the longest distance, although true root positions are unknown.

From lhara et al. 1999
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Proteorhodopsin Predicted Secondary Structure
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The amino acid residues that form a retinal binding pocket in archaeal
rhodopsins are also highly conserved in proteorhodopsin (Fig. 2). In
particular, the critical lysine residue in helix G, which forms the Schift
base linkage with retinal in archaeal rhodopsins, is present in
proteorhodopsin. Analysis of a structural model of proteorhodopsin (/4 ),
in conjunction with multiple sequence alignments, indicates that the
majority of active site residues are well conserved between
proteorhodopsin and archaeal bacteriorhodopsins (/5).



14, Considering differences in the ionic ‘environment, se-

quence differences between archaeal and bacterial rho-
dopsins might be expected to accumulate at residues
near the solvent interface. To understand the spatial
distribution of these amino acid substitutions, a model
of the proteorhodopsin was constructed using the
known crystal structure of bacteriorhodopsin. The mod-
el was constructed by threading the proteorhodopsin
sequence on the 1.55 A resolution structure of bacte-
riorhodopsin [H. Luecke, B. Schobert, H. T. Richter, ). P.
Cartailler, J. K. Lanyi, J. Mol. Biol. 291, 899 (1999)]. This
pairwise alignment was adjusted to minimize the Sippl
mean force field energy [M. ). Sippl, J. Mol Biol. 213,
859 (1990)]. This was followed by model construction
with PROMODII and energy minimization with the
CHARMM force field. The structure was visualized with
the Swiss PDB viewer [N. Guex and M. C Peitsch,
Electrophoresis 18, 2714 (1997)). In comparison to the
most closely related archaeal sequences, the majority of
the nonconservative substitutions resulted in changes in
residue polarity and were typically localized to regions
of solution contact (79). In contrast to archaeal rho-
dopsins, proteorhodopsin lacks a region between helix B
and C that adopts an extended conformation and is in
contact with solution on the extracellular surface.



The amino acid residues that form a retinal binding pocket in archaeal
rhodopsins are also highly conserved in proteorhodopsin (Fig. 2). In
particular, the critical lysine residue in helix G, which forms the Schift
base linkage with retinal in archaeal rhodopsins, is present in
proteorhodopsin. Analysis of a structural model of proteorhodopsin (/4 ),
in conjunction with multiple sequence alignments, indicates that the
majority of active site residues are well conserved between
proteorhodopsin and archaeal bacteriorhodopsins (/5).



15.

Conserved amino acid residues include Lys**’
(Lys?'¢), which forms the Schiff base with retinal;
Arg™ (Arg™); Asp”” (Asp®); Thr'®' (Thr™); and
Asp??” (Asp®'?). The numbering begins with the
NH,-terminal residue of proteorhodopsin; the num-
bers of the corresponding residues in the well-char-
acterized bacteriorhodopsin from Halobacterium sali-
narum are indicated in parentheses. Of these resi-
dues, Asp?” (Asp®) is critical for proton transfer from
the photoactivated retinal. Residue Asp??” (Asp?'?)
probably interacts with another conserved site,
Tyr?® (Tyr'®%), which contributes to the required

environment for the proton conduit from the Schiff
base []. Heberle, Biochim. Biophys. Acta 1458, 135
(2000)]. Arg® (Arg®?) appears to regulate the pro-
cess of proton release that occurs before the proton
uptake from the cytoplasm [R. Govindjee et al., Bio-
phys. J. 71, 1011 (1996)). Thus, the essential steps of
light-driven proton pumping by proteorhodopsin like-
ly follow the same path as in the archaeal bacterio-
rhodopsins. Glu™® of proteorhodopsin corresponds
to Asp®® of bacteriorhodopsin, the proton donor to
the Schiff base in the reprotonation phase of the
pumping cycle. The carboxylic acid residue in this
position is shared by bacteriorhodopsins and proteo-
rhodopsin, but not by sensory rhodopsins and halo-
rhodopsins, which suggests mechanistic similarity be-
tween proteorhodopsin and bacteriorhodopsins in
the proton uptake stage of their pumping cycles. A
major difference between proteorhodopsin and bac-
teriorhodopsins is apparent in the pathway of proton
release to the exterior of the cell. In bacteriorhodop-
sin, this step is largely mediated by two glutamates,
Glu"™ and Glu™®* [L S. Brown et al., J. Biol. Chem.
270, 27122 (1995); S. P. Balashov et al., Biochemistry
36, 8671 (1997)]. One or both of these residues are
missing in other members of the prokaryotic rhodop-
sin family. Examination of the distribution of nega-
tively charged residues on the external face of pro-
teorhodopsin using a structural model (74) shows
that Asp?’, Glu®®, Asp®®, Glu'*?, and Asp?'? are
candidates for forming the proton path. Of these
residues, Glu'*? and Glu®® appear to be optimally
positioned to act as the principal proton acceptors in
the release process.



Proteorhodopsin in E. coli
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Fig. 3. (A) Proteorhodopsin-expressing E. coli cell suspension (+) compared to control cells (—),
both with all-trans retinal. (B) Absorption spectra of retinal-reconstituted proteorhodopsin in E. coli
membranes (77). A time series of spectra is shown for reconstituted proteorhodopsin membranes
(red) and a negative control (black). Time points for spectra after retinal addition, progressing from
low to high absorbance values, are 10, 20, 30, and 40 min.
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Fig. 3. (A) Proteorhodopsin-expressing E. coli cell suspension (+)
compared to control cells (-), both with all-trans retinal. (B) Absorption
spectra of retinal-reconstituted proteorhodopsin in E. coli membranes
(17). A time series of spectra is shown for reconstituted proteorhodopsin
membranes (red) and a negative control (black). Time points for spectra

after retinal addition, progressing from low to high absorbance values,
are 10, 20, 30, and 40 min.



Proteorhodopsin was amplified from the 130-kb bac- terioplankton BAC
clone 31 A08 by polymerase chain reaction (PCR), using the primers 35 -
ACCATGGGTA- AAT TAT TACTGATAT TAGG-3 and 5 -AGCAT TA-
GAAGAT TCT T TAACAGC-3 . The amplified fragment was cloned
with the pBAD TOPO TA Cloning Kit (Invitrogen). The protein was
cloned with its native signal sequence and included an addition of the V5
epitope and a polyhistidine tail in the COOH-terminus. The same PCR
product in the opposite orientation was used as a negative control. The
protein was expressed in the E. coli outer membrane protease- deficient
strain UTS5600 [M. E. Elish, J. R. Pierce, C. F. Earhart, J. Gen. Microbiol.
134, 1355 (1988)] and induced with 0.2% arabinose for 3 hours.
Membranes were prepared according to Shimono et al. [K. Shi- mono,
M. Iwamoto, M. Sumi, N. Kamo, FEBS Lett. 420, 54 (1997)] and
resuspended in 50 mM tris-Cl (pH 8.0) and 5 mM MgClI2. The

absorbance spectrum was measured according to Bieszke et al. (7) in the
presence of 10 M all-frans retinal.



Proteorhodopsin function

A OFF
ON l
Proteo-

rhodopsin Retinal ;l/‘\

+
[3H] TPP* uptake,
nmol/mg protein

+ +
T 5 min
o
o |
o o 0 1 2 3 4 :
%
OFF L Time, min
l Fig. 4. (A) Light-driven transport of protons by a

proteorhodopsin-expressing E. coli cell suspension.
The beginning and cessation of illumination (with
yellow light >485 nm) is indicated by arrows labeled ON and OFF, respectively. The cells were
suspended in 10 mM NaCl, 10 mM MgSO,-7H,0O, and 100 wM CaCl,. (B) Transport of *H*-labeled
tetraphenylphosphonium ([PH*]TPP) in E. coli right-side-out vesicles containing expressed proteorho-
dopsin, reconstituted with (squares) or without (circles) 10 wM retinal in the presence of light (open
symbols) or in the dark (solid symbols) (20).




20. Right-side-out membrane vesicles were prepared according to
Kaback [H. R. Kaback, Methods Enzymol. 22,99 (1971)]. Membrane
electrical potential was measured with the lipophilic cation TPP by
means of rapid filtration [E. Prossnitz, A. Gee, G. F. Ames, J. Biol. Chem.
264, 5006 (1989)] and was calculated according to Robertson et al. [D.
E. Robertson, G. J. Kaczorowski, M. L. Garcia, H. R. Kaback,
Biochemistry 19, 5692 (1980)]. No energy sources other than light were
added to the vesicles, and the experiments were conducted at room
temperature.



AAX 103

AAx103

590 nm

Time (ms)

| |

|

I

I

|

50ms-0.5ms —
/\.\ )_//m

700

05ms-0ms -
| | | | | |
400 450 500 550 600 650
Wavelength (nm)

Figure 5

Laser flash-induced absorbance
changes in suspensions of E. coli
membranes containing
proteorhodopsin. A 532-nm pulse
(6 ns duration, 40 mJ) was delivered
at time 0, and absorption changes
were monitored at various
wavelengths in the visible range in
a lab-constructed flash photolysis
system as described (34). Sixty-
four transients were collected for
each wavelength. (A) Transients at
the three wavelengths exhibiting
maximal amplitudes. (B) Absorption
difference spectra calculated from
amplitudes at 0.5 ms (blue) and
between 0.5 ms and 5.0 ms (red).

http://www.sciencemag.org/content/289/5486/1902/F5.expansion.html



Implications. The <y-proteobacteria that
harbor the proteorhodopsin are widely dis-
tributed in the marine environment. These
bacteria have been frequently detected in cul-
ture-independent surveys (24) in coastal and
oceanic regions of the Atlantic and Pacific
Oceans, as well as in the Mediterranean Sea
(8, 25-29). In addition to its widespread dis-
tribution, preliminary data also suggest that
this y-proteobacterial group is abundant (30,

31) and specifically localized in marine sur-
face waters. Preliminary data (30) also indi-
cate that the abundance of SAR86-like bac-
teria positively correlates with proteorhodop-
sin mRNA expression. The absorbance A
of proteorhodopsin at 520 nm matches well
with the photosynthetically available irradi-
ance in the ocean’s upper water column. Fur-
thermore, some phylogenetic relatives of the
proteorhodopsin-containing  bacteria  are
chemolithoautotrophs that use CO, as a sole
carbon source (32). Proteorhodopsin could
support a photoheterotrophic lifestyle, or it
might in fact support a previously unrecog-
nized type of photoautotrophy in the sea.
Either of these alternatives suggests the pos-
sibility of a previously unrecognized pho-
totrophic pathway that may influence the flux
of carbon and energy in the ocean’s photic
zone worldwide.
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Figure 1 Laser flash-induced absorbance changes in suspensions of membranes
prepared from the prokaryotic fraction of Monterey Bay surface waters. Top, membrane
absorption was monitored at the indicated wavelengths and the flash was at time 0 at
532 nm. Bottom, absorption difference spectrum at 5 ms after the flash for the
environmental sample (black) and for E. coli-expressed proteorhodopsin (red).
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Figure 2 Laser flash-induced transients at 500 nm of a Monterey Bay bacterioplankton |
membrane preparation. Top, before addition of hydroxylamine; middle, after 0.2 M
hydroxylamine treatment at pH 7.0, 18 °C, with 500-nm illumination for 30 min; bottom,
after centrifuging twice with resuspension in 100 mM phosphate buffer, pH 7.0, followed |
by addition of 5 wM all-trans retinal and incubation for 1 h.
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Figure 3 Phylogenetic analysis of the inferred amino-acid sequence of cloned

proteorhodopsin genes. Distance analysis of 220 positions was used to calculate the tree
by neighbour-joining using the PaupSearch program of the Wisconsin Package version
10.0 (Genetics Computer Group; Madison, Wisconsin). H. salinarum bacteriorhodopsin

was used as an outgroup, and is not shown. Scale bar represents number of substitutions
per site. Bold names indicate the proteorhodopsins that were spectrally characterized in

this study.
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Figure 5 Absorption spectra of retinal-reconstituted proteorhodopsins in E. coli
membranes. All-frans retinal (2.5 wM) was added to membrane suspensions in 100 mM
phosphate buffer, pH 7.0, and absorption spectra were recorded. Top, four spectra for
palE6 (Antarctica), HOT 75m4, HOT Om1, and BAC 31A8 (Monterey Bay) at 1 h after
retinal addition. Bottom, downwelling irradiance from HOT station measured at six
wavelengths (412, 443, 490, 510, 555 and 665 nm) and at two depths, for the same
depths and date that the HOT samples were collected (0 and 75 m). Irradiance is plotted
relative to irradiance at 490 nm.
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Figure 4 Multiple alignment of proteorhodopsin amino-acid sequences. The secondary structure shown (boxes for transmembrane helices) is derived from hydropathy plots. Residues
predicted to form the retinal-binding pocket are marked in red.
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a, b, Evolutionary distances for the
pufM genes (a) were determined from
a~an alignment of 600 nucleotide
positions, and for rRNA genes (b) from
an alignment of 860 nucleotide
sequence positions. Evolutionary
relationships were determined by
neighbour-joining analysis (see

*4 Methods). The green non-sulphur

bacterium Chloroflexus aurantiacus
was used as an outgroup. pufM genes
that were amplified by PCR in this
study are indicated by the env prefix,
with 'm' indicating Monterey, and HOT
indicating Hawaii ocean time series.
Cultivated aerobes are marked in light
blue, bacteria cultured from sea water
are marked with an asterisk, and
environmental cDNAs are marked in

Chioroflexus aurantiacus red. Photosynthetic -, - and -

proteobacterial groups are indicated
by the vertical bars to the right of the
tree. Bootstrap values greater than
50% are indicated above the
branches. The scale bar represents
number of substitutions per site.
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Figure 2 Schematic comparison of photosynthetic operons from R. gelatinosus (3- genes; orange, carotenoid biosynthesis genes; red, light-harvesting and reaction centre

proteobacteria), R. sphaeroides («-proteobacteria) and uncultured environmental BACs.  genes; and blue, cytochrome ¢,. White boxes indicate non-photosynthetic and
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Figure 3 Phylogenetic analyses of BchB and BehH proteins. a, Phylogenetic tree for the
BchB protein. b, Phylogenetic tree for the BchH protein. The BehH sequences from
Chlorobium vibrioforme*®and BechH2 and BchH3 from C. tepidum'® were omitted from the
tree because these genes potentially encode an enzyme for bacteriochlorophyll ¢
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biosynthesis and are probably of distinct origin (J. Xiong, personal communication).
Bootstrap values (neighbour-joining/parsimony method) greater than 50% are indicated
next to the branches. The scale bar represents number of substitutions per site. The
position of Acidiphilium rubrum (bold branch) was not well resolved by both methods.
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Figure 5 Absorption spectra of retinal-reconstituted proteorhodopsins in E. coli
membranes. All-trans retinal (2.5 wM) was added to membrane suspensions in 100 mM
phosphate buffer, pH 7.0, and absorption spectra were recorded. Top, four spectra for
palE6 (Antarctica), HOT 75m4, HOT Om1, and BAC 31A8 (Monterey Bay) at 1 h after
retinal addition. Bottom, downwelling irradiance from HOT station measured at six
wavelengths (412, 443, 490, 510, 555 and 665 nm) and at two depths, for the same
depths and date that the HOT samples were collected (0 and 75 m). Irradiance is plotted
relative to irradiance at 490 nm.
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Acid Mine Drainage 2004

Eukaryotes 4% Sulfobacillus spp. 1%

Archaea 10%

Leptospirillum
ap 1110%

Leptospirillum
ap 1 75%

Figure 1 The pink biofilm. a, Photograph of the biofilm in the Richmond mine (hand
included for scale). b, FISH image of a. Probes targeting bacteria (EUBmix; fluorescein
isothiocyanate (green)) and archaea (ARC915; Cy5 (blue)) were used in combination with a
probe targeting the Leptospirillum genus (LF655; Cy3 (red)). Overlap of red and green
(vellow) indicates Leptospirillum cells and shows the dominance of Leptospirillum.

¢, Relative microbial abundances determined using quantitative FISH counts.
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Fig. 1. MODIS-Aqua satellite image of
ocean chlorophyll in the Sargasso Sea grid
about the BATS site from 22 February
2003. The station locations are overlain
with their respective identifications. Note
the elevated levels of chlorophyll (green
color shades) around station 3, which are
not present around stations 11 and 13.

http://www.sciencemag.org/content/304/5667/66
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Table 1. Gene count breakdown by TIGR role
category. Gene set includes those found on as-
semblies from samples 1 to 4 and fragment reads
from samples 5 to 7. A more detailed table, sep-
arating Weatherbird Il samples from the Sorcerer ||
samples is presented in the SOM (table S4). Note
that there are 28,023 genes which were classified

in more than one role category.

TIGR role category Total
genes
Amino acid biosynthesis 37,118
Biosynthesis of cofactors, 25,905
prosthetic groups, and carriers
Cell envelope 27,883
Cellular processes 17,260
Central intermediary metabolism 13,639
DNA metabolism 25,346
Energy metabolism 69,718
Fatty acid and phospholipid 18,558
metabolism
Mobile and extrachromosomal 1,061
element functions
Protein fate 28,768
Protein synthesis 48,012
Purines, pyrimidines, nucleosides, 19,912
and nucleotides
Regulatory functions 8,392
Signal transduction 4,817
Transcription 12,756
Transport and binding proteins 49,185
Unknown function 38,067
Miscellaneous 1,864
Conserved hypothetical 794,061
Total number of roles assigned 1,242,230
Total number of genes 1,214,207

http://www.sciencemag.org/content/304/5667/66

160 im0
. & UL T 7 20
‘50/*1\””!‘0? b 30
S

50 107 gég;o‘
== 1 =50
e K S N
140 Yo ampty, 0 1209, ) 60
BN et AR A R
12( 00 100 0

Fig. 4. Circular diagrams of nine complete megaplasmids. Genes encoded in the forward direction
are shown in the outer concentric circle; reverse coding genes are shown in the inner concentric
circle. The genes have been given role category assignment and colored accordingly: amino acid
biosynthesis, violet; biosynthesis of cofactors, prosthetic groups, and carriers, light blue; cell
envelope, light green; cellular processes, red; central intermediary metabolism, brown; DNA
metabolism, gold; energy metabolism, light gray; fatty acid and phospholipid metabolism, magenta;
protein fate and protein synthesis, pink; purines, pyrimidi ides, and ides, orange;
regulatory functions and signal transduction, olive; transcription, dark green; transport and binding
proteins, blue-green; genes with no known homology to other proteins and genes with homology
to genes with no known function, white; genes of unknown function, gray; Tick marks are placed
on 10-kb intervals.

Fig. 2. Gene conser- 0
vation among closely I
related Prochlorococ-
cus. The outermost
concentric circle of
the diagram depicts
the competed genom-
ic sequence of Pro-
chlorococcus marinus
MED4 (77). Fragments
from  environmental
sequencing were com-
pared to this complet-
ed Prochlorococcus ge-
nome and are shown in
the inner concentric
circles and were given
boxed outlines. Genes
for the outermost cir-
cle have been as-
signed psuedospec-
trum colors based on
the position of those
genes along the chro-
mosome, where genes
nearer to the start of
the genome are col-
ored in red, and genes

nearer to the end of the genome are colored in blue. Fragments from environmental sequencing

L

i

o
~

were subjected to an analysis that identifies conserved gene order between those fragments and
the completed Prochlorococcus MED4 genome. Genes on the environmental genome segments
that exhibited conserved gene order are colored with the same color assignments as the

Prochlorococcus MED4 chromosome. Colored regions on the environmental segments exhibiting

color differences from the adjacent outermost concentric circle are the result of conserved gene

order with other MED4 regions and probably represent chromosomal rearrangements. Genes that

did not exhibit conserved gene order are colored in black.
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rRNA phylotyping from metagenomics
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Shotgun Sequencing Allows Alternative Anchors (e.g., RecA)
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Fig. 6. Phylogenetic diversity of Sargasso Sea sequences using multiple phylogenetic markers. The
relative contribution of organisms from different major phylogenetic groups (phylotypes) was
measured using multiple phylogenetic markers that have been used previously in phylogenetic
studies of prokaryotes: 16S rRNA, RecA, EF-Tu, EF-G, HSP70, and RNA polymerase B (RpoB). The
relative proportion of different phylotypes for each sequence (weighted by the depth of coverage
of the contigs from which those sequences came) is shown. The phylotype distribution was
determined as follows: (i) Sequences in the Sargasso data set corresponding to each of these genes
were identified using HMM and BLAST searches. (ii) Phylogenetic analysis was performed for each
phylogenetic marker identified in the Sargasso data separately compared with all members of that
gene family in all complete genome sequences (only complete genomes were used to control for
the differential sampling of these markers in GenBank). (iii) The phylogenetic affinity of each
sequence was assigned based on the classification of the nearest neighbor in the phylogenetic tree.
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Functional Inference from Metagenomics

« Can work well for individual genes
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Functional Diversity of Proteorhodopsins?
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Figure 1| Phylogenetic distribution of dinoflagellate rhodopsins. Protein sequences of 96 rhodopsins encompassing the known diversity of microbial

(type 1) rhodopsins from the three domains of life’® were used to generate a maximum likelihood phylogenetic tree (See Supplementary Table S1for accession
numbers). Grey boxes distinguish the recognized groupings of type 1rhodopsin, and the prevalent function in each group is shown: proton pumps (H*), sensory,
chlorine pumps (ClI-) and unknown (?). Numbers indicate bootstrap support when 250% (over 300 replicates). Black boxes highlight dinoflagellate genes:
Dinoflagellate 1is a large group of proteorhodopsins present in diverse dinoflagellates; dinoflagellate 2 includes two K. micrum proteorhodopsin genes

of independent origin; dinoflagellate 3 includes two O. marina genes related to algal sensory rhodopsins, probably of endosymbiotic origin.
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Figure 2 | Structural and ive analysis of a di p! hodopsin. (a) Amino-acid alignment of various rhodopsins from bacteria and

dinoflagellates: SAR86-31A08 is a functionally characterized proteorhodopsin'; K. micrum is a ‘Dinoflagellate group 2" in Figure 1; Oxyrrhis 2197 represents
‘Dinoflagellate 3'; XR S. ruber is a Xanthorhodopsin; the remaining sequences belong to ‘Dinoflagellate group 1. Numbers on the right indicate residue
number. Black rectangles show predicted transmembrane segments. Functional sites (coloured triangles): blue, proton acceptor and donor; green, spectral
tuning (L% for green and Q for blue); red, lysine linked to the cofactor retinal. Epitope for antibody preparation is indicated with an orange rectangle.
(b) Secondary structure of the O. marina proteorhodopsin predicted using PHD (http://www.predictprotein.org/). Single-letter amino-acid codes are
used, and numbers correspond to the positions in O. marina and 31A08', respectively. Functional residues are highlighted as follows. Blue: proton acceptor
(D7) and proton donor (E"1%8); green: spectral tuning; red: retinal pocket; red filled: lysine linked to retinal; orange: epitope for antibody.



Rhodopsin MitoTracker
<
Arx
260 =m (o0 P
P . .
o OV sy
Rl
25
60 ==
40 wm ~ Bl &
.' L TN .‘; «
;'3‘_\\\"\
‘.-:I 9
30 ==
20 - a > & -
Skt
O
S F.
- ol 2 : 9 i
15 = g,

Figure 3 | Cellular localization of proteorhodopsin in O. marina cells. (a) Western blot of total O. marina protein probed with an antibody raised against
the C-terminal peptide of the proteorhodopsin OM27 from O. marina. Expected protein size is 28 kDa. (b) Localization of proteorhodopsin in O. marina
cells using immunofluorescence assay with the same antibody. Antibody signal forms small irregular and ring-like structures independent of mitochondria
in O. marina. Three independent cells are shown, each showing (left to right) differential interference contrast (DIC) light micrograph, anti-OM27
proteorhodopsin, MitoTracker staining, Hoechst 33258 staining for DNA and a merge of all four. White bar =10 um. See Supplementary Movies 1-4 for a
360° video rendering. DAPI, 4,6-diamidino-2-phenylindole.
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Table 1. Marine bacterial isolates and genome fragments containing proteorhodopsins.

Table 1. Cont.

Organism Strain General Group Reference

Genomes
Methylophilales HTCC2181 Betaproteobacteria GBMF
Rhodobacterales sp. HTCC2255 Alphaproteobacteria GBMF
Vibrio angustum S14 Gammaproteobacteria GBMF
Photobacterium SKA34 Gammaproteobacteria GBMF
Vibrio harveyi ATCC BAA-1116 Gammaproteobacteria GenBank # CP000789
Marine gamma HTCC2143 Gammaproteobacteria GBMF
Marine gamma HTCC2207 Gammaproteobacteria GBMF
Cand. P. ubique HTCC1002 Alphaproteobacteria GBMF
Cand. P. ubique HTCC1062 Alphaproteobacteria [26]
Rhodospirillales BAL199 Alphaproteobacteria GBMF
Marinobacter ELB17 Gammaproteobacteria GBMF
Vibrio campbelli AND4 Gammaproteobacteria GBMF
Vibrio angustum S14 Gammaproteobacteria GBMF
Dokdonia donghaensis MED134 Flavobacteria GBMF
Polaribacter dokdonensis MED152 Flavobacteria GBMF
Psychroflexus ATCC700755 Flavobacteria GBMF
Polaribacter irgensii 23-p Flavobacteria GBMF
Flavobacteria bacterium BAL38 Flavobacteria GBMF

BACs and fosmids
HF10_05C07 Proteobacteria [24]
HF10_45G01 Proteobacteria [24]
HF130_81H07 Gammaproteobacteria [24]
EBO_39F01 Alphaproteobacteria 241
EBO_39H12 Proteobacteria [24]
EB80_69G07 Alphaproteobacteria [24]
EB80_02D08 Gammaproteobacteria [24]
EBO0_35D03 Proteobacteria [24]
EB0_49D07 Proteobacteria 241
EBO_50A10 Gammaproteobacteria [24]
EBO_55B11f Alphaproteobacteria [24]
EBO_41B09 Betaproteobacteria [24]
HF10_19P19 Proteobacteria n7n
HF10_25F10 Proteobacteria n7
HF10_49E08 Planctomycetes [24]
HF10_12C08 Alphaproteobacteria [24]
HF10_29C11 Euryarchaea [24]
MED13K09 unknown (101
MED18B02 unknown (101
MED35C06 unknown [10]
MED42A11 unknown [0
MED46A06 unknown (o1
MED49C08 unknown [10]
MED66A03 unknown (101
MED82F10 unknown (101
MED86H08 unknown (10
RED17H08 unknown [0
RED22E04 unknown (101
eBACHOT4E07 Gammaproteobacteria [25]
EBAC20E09 Gammaproteobacteria [25]

Organism Strain General Group Reference
HOT2C01 unknown [8]
EBAC31A08 Gammaproteobacteria 4
ANT32C12 unknown (8
HF70_39H11_ArchHighGC unknown n2)
HF10_3D09_mediumGC unknown n2)
HF70_19B12_highGC unknown n21
HF70_59C08 unknown n21

Marine microbial isolates and large genome fragments from the environment GBMF, microbial genomes sequenced as part of the Gordon and Betty Moore Foundation
microbial genome sequencing project (http: moore.org/mic found to encode proteorhodopsin genes. The list includes whole genome sequences
from a wide array of cultivated marine microorganisms (Genomes), as well as cloned large DNA fragments (BACs and fosmids) recovered directly from the environment.
doi10.1371/journal.pbio.1000359.t001




Box 1. A Decade of Proteorhodopsin
Milestones

2000

2001

2003

2004

2005

2006

2007

2008

2010

*First proteorhodopsin gene found in uncultured
SAR86 using metagenomics; proteorhodopsin
light-driven proton pump activity confirmed in
heterologous E. coli cells [4].

*Proteorhodopsin presence confirmed directly in
the ocean using laser flash photolysis [5].
*Proteorhodopsin genes also found in other
bacterial groups [8].

*Enormous diversity of proteorhodopsin genes
found in the Sargasso Sea using metagenomics [9].
*Retinal biosynthesis pathways found in metage-
nomic data and confirmed using E. coli cells [10].
*Proteorhodopsin genes are found in ‘Canditatus
Pelagibacter ubique’ (SAR11), the most abundant
bacterium on earth; environmental SAR11 proteor-
hodopsin presence confirmed using metaproteo-
mics [11].

*Proteorhodopsin genes found in uncultured
marine Archaea [12].

«First indication of proteorhodopsin light-depen-
dent growth in cultured Flavobacteria [13] (see
Figure 1 for colony morphologies and pigmenta-
tion).

*Proteorhodopsin genes found in non-marine
environments [14,15].

*Proteorhodopsin phototrophy directly confirmed
using a genetic system in marine Vibrio sp. [16]



Pretty proteorhodopsin

;._-.._.ﬂ..'.

Figure 1. Various colony morphologies and coloration of
different proteorhodopsin-containing bacteria used to study
proteorhodopsin phototrophy. From top to bottom, the flavobac-
terium Polaribacter dokdonensis strain MED152 used to show proteor-
hodopsin light stimulated growth [13]; the flavobacterium Dokdonia
donghaensis strain MED134 used to show proteorhodopsin light
stimulated CO,-fixation [23]; and Vibrio strain AND4 used to show
proteorhodopsin phototrophy [16]; note the lack of detectable
pigments in Vibrio strain AND4. However, when these vibrio cells are
pelleted, they do show a pale reddish color, which is the result of
proteorhodopsin pigments presence in their membranes. Photos are
courtesy of Jarone Pinhassi.
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Figure 2. An artist’s rendition of the fundamental arrangement of proteorhodopsin in the cell membrane. Left panel: a cartoon (not to
scale) of planktonic bacteria in the ocean water column. Right panel: a simple view of one potential proteorhodopsin energy circuit. (1)
Proteorhodopsin - uses light energy to translocate protons across the cell membrane. (2) Extracellular protons - the excess extracellular protons
create a proton motive force, that can energetically drive flagellar motility, transport processes, or ATP synthesis in the cell. (3) Proton-translocating
ATPase — a multi-protein membrane-bound complex that can utilize the proton motive force to synthesize 5. Adenosine triphosphate (ATP, a central
high energy biochemical intermediate for the cell) from 4. Adenosine triphosphate (ADP, a lower energy biochemical intermediate). lllustration by
Kirsten Carlson, © MBARI 2001.
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