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rRNA Ecology Workflow





ACCUMULATION CURVE



Accumulation curves



RANK ABUNDANCE CURVE



Another way to compare 
how well communities have 
been sampled is to plot their 
rank-abundance curves. The 
species are ordered from 
most to least abundant on 
the x axis, and the 
abundance of each type 
observed is plotted on the y 
axis. The moth and soil 
bacteria communities 
exhibit a similar pattern 
(Fig.2), one that is typical of 
superdiverse communities 
such as tropical insects. A 
few species in the sample are 
abundant, but most are rare, 
producing the long right-
hand tail on the rank-
abundance curve.



RICHNESS ESTIMATORS



In contrast to rarefaction, richness estimators 
estimate the total richness of a community from a 
sample, and the estimates can then be compared 
across samples. These estimators fall into three 
main classes: extrapolation from accumulation 
curves, parametric estimators, and nonparametric 
estimators (14, 23, 47). To date, we have found only 
two studies that apply richness estimators to 
microbial data (33, 43).



CURVE EXTRAPOLATION



w
Most curve extrapolation methods use the observed accumulation 
curve to fit an assumed functional form that models the process of 
observing new species as sampling effort increases. The asymptote 
of this curve, or the species richness expected at infinite effort, is 
then estimated. These models include the Michaelis-Menten 
equation (13, 51) and the negative exponential function (61). The 
benefit of estimating diversity with such extrapolation methods is 
that once a species has been counted, it does not need to be 
counted again. Hence, a surveyor can focus effort on identifying 
new, generally rarer, species. The downside is that for diverse 
communities in which only a small fraction of species is detected, 
several curves often fit equally well but predict very different 
asymptotes (61). This approach therefore requires data 
from relatively well sampled communities, so at present 
curve extrapolation methods do not seem promising for 
estimating microbial diversity in most natural 
environments.



PARAMETRIC
ESTIMATION



Parametric estimators are another class of estimation methods. 
These methods estimate the number of unobserved species in the 
community by fitting sample data to models of relative 
species abundances. These models include the lognormal (49) 
and Poisson lognormal (7). For instance, Pielou (48) derived an 
estimator that assumes species abundances are distributed 
lognormally; that is, if species are assigned to log abundance 
classes, the distribution of species among these classes is normal. 
By fitting sample data to the lognormal distribution, the 
parameters of the curve can be evaluated. Pielou's estimator uses 
these parameter values to estimate the number of species that 
remain unobserved and thereby estimate the total number of 
species in the community.



There are three main impediments to using parametric estimators 
for any community.



There are three main impediments to using parametric estimators 
for any community. First, data on relative species abundances are 
needed. For macroorganisms, often only the presence or absence of 
a species in a sample or quadrat is recorded. In contrast, data on 
relative OTU abundances of microbes are often collected (see 
discussion below about potential biases). Second, one has to make 
an assumption about the true abundance distribution of a 
community. Although most communities of macroorganisms seem 
to display a lognormal pattern of species abundance (17, 36, 66), 
there is still controversy as to which models fit best (24, 30). In the 
absence of a variety of large microbial data sets, it is not clear 
which, if any, of the proposed distribution models describe 
microbial communities. Finally, even if one of these models is a 
good approximation of relative abundances in microbial 
communities, parametric estimators require large data sets to 
evaluate the distribution parameters. The largest microbial data 
sets currently available include only a few hundred individuals.



NON-PARAMETRIC
ESTIMATION



The final class of estimation methods, nonparametric estimators, is 
the most promising for microbial studies. These estimators are 
adapted from mark-release-recapture (MRR) statistics 
for estimating the size of animal populations (32, 59). 
Nonparametric estimators based on MRR methods consider the 
proportion of species that have been observed before 
(“recaptured”) to those that are observed only once. In a very 
diverse community, the probability that a species will be observed 
more than once will be low, and most species will only be 
represented by one individual in a sample. In a depauperate 
community, the probability that a species will be observed more 
than once will be higher, and many species will be observed 
multiple times in a sample.



CHAO vs ACE



The Chao1 and abundance-based coverage 
estimators (ACE) use this MRR-like ratio to 
estimate richness by adding a correction factor to 
the observed number of species (9, 11). (For reviews 
of these and other nonparametric estimators, see 
Colwell and Coddington [14] and Chazdon et al. 
[12].)



CHAO



For instance, Chao1 estimates total species richness as where Sobs 
is the number of observed species, n1 is the number of singletons 
(species captured once), and n2 is the number of doubletons 
(species captured twice) (9). Chao (9) noted that this index is 
particularly useful for data sets skewed toward the low-abundance 
classes, as is likely to be the case with microbes. 



ACE



The ACE (10) incorporate data from all species with fewer than 10 individuals, rather than just singletons and 
doubletons. ACE estimates species richness as

where Srare is the number of rare samples (sampled abundances 
≤10) and Sabund is the number of abundant species (sampled 
abundances >10). Note that Srare + Sabund equals the total 
number of species observed. CACE = 1 − F1/Nrare estimates the 
sample coverage, where F1 is the number of species with i 
individuals and  Finally



• http://www.ncbi.nlm.nih.gov/pmc/articles/instance/93182/
equ/M4

which estimates the coefficient of variation of the Fi's (R. Colwell, User's Guide to EstimateS 5 [http://
viceroy.eeb.uconn.edu/estimates]). 

http://viceroy.eeb.uconn.edu/estimates
http://viceroy.eeb.uconn.edu/estimates


EVALUATING
MEASURES



Both Chao1 and ACE underestimate true richness at low sample 
sizes. For example, the maximum value of SChao1 is (S2obs + 1)/2 
when one species in the sample is a doubleton and all others are 
singletons. Thus, SChao1 will strongly correlate with sample size 
until Sobs reaches at least the square root of twice the total 
richness (14).



BIAS
Bias describes the difference between the expected value of the 
estimator and the true, unknown richness of the community being 
sampled (in other words, whether the estimator consistently 
under- or overestimates the true richness).

To test for bias, one needs to know the true richness to compare 
against the sample estimates. As yet, this comparison is impossible 
for microbes, because no communities have been exhaustively 
sampled. The bias of richness estimators has only been tested in a 
few natural communities in which the exact abundance of every 
species in an area is known (12, 14, 15, 26, 47). 



PRECISION
Precision describes the variation of the estimates from all possible 
samples that can be taken from the population
In contrast, precision is a relatively simple property to assess. With 
multiple samples (or one large sample) from a microbial 
community, the variance of microbial richness estimates can be 
calculated and compared. Moreover, most ecological questions 
require only comparisons of relative diversity. For these questions, 
an estimator that is consistent with repeated sampling (is precise) 
is often more useful than one that on average correctly predicts 
true richness (has the lowest bias). Thus, if we use diversity 
measures for relative comparisons, we avoid the problem of not 
being able to measure bias. (This assumes that the bias of an 
estimator does not differ so radically among communities that it 
disrupts the relative order of the estimates. In the absence of 
alternative evidence, this initial assumption seems appropriate.) 



Chao (8) derives a closed-form solution for the variance of SChao1: 

This formula estimates the precision of Chao1; that is, it estimates 
the variance of richness estimates that one expects from multiple 
samples. A closed-form solution of variance for the ACE has not yet 
been derived.



FOUR DATA SETS



Human Mouth and Gut









Rarefaction 
compares observed 
richness among sites, 
treatments, or 
habitats that have 
been unequally 
sampled. A rarefied 
curve results from 
averaging 
randomizations of the 
observed accumulation 
curve (25). The variance 
around the repeated 
randomizations allows 
one to compare the 
observed richness 
among samples, but it is 
distinct from a measure 
of confidence about the 
actual richness in the 
communities.



Aquatic Mesocosms





Scottish Soil







CONCLUSIONS



In conclusion, while microbiologists should be cautious about 
sampling biases and use clear OTU definitions, our results suggest 
that comparisons among estimates of microbial diversity are 
possible. Nonparametric estimators show particular promise for 
microbial data and in some habitats may require sample sizes of 
only 200 to 1,000 clones to detect richness differences of only tens 
of species. While daunting less than a decade ago, sequencing this 
number of clones is reasonable with the development of high-
throughput sequencing technology. Augmenting this new 
technology with statistical approaches borrowed from “macrobial” 
biologists offers a powerful means to study the ecology and 
evolution of microbial diversity in natural environments.



Because of inconsistencies in how diversity is 
measured in individual studies, e.g., how operational 
taxonomic units (OTUs) are selected or which region 
of the rRNA gene is sequenced, it is only by integrating 
information from these studies into a single 
phylogenetic context that these important questions can 
be addressed



Later - add genes and genomes

• Can do alpha, beta and gamma for taxa or genes or 
genomes





Phylogenetic distance measures can provide far 
more power because they exploit the degree of 
divergence between different sequences.



Here we introduce a new phylogenetic method, 
called UniFrac, that measures the distance between 
communities based on the lineages they contain.



Here we introduce a new phylogenetic method, called UniFrac, 
that measures the distance between communities based on the 
lineages they contain. UniFrac can be used to compare many 
samples simultaneously because it satisfies the technical 
requirements for a distance metric (it is always positive, is 
transitive, and satisfies the triangle inequality) and can thus be 
used with standard multivariate statistics such as unweighted-
pair group method using average linkages (UPGMA) clustering 
(9) and principal coordinate analysis (23). Similarly, UniFrac is 
more powerful than nonphylogenetic distance measures 
because it exploits the different degrees of similarity 
between sequences. To demonstrate the utility of the UniFrac 
metric for comparing multiple community samples and 
determining the factors that explain the most variation, we 
compared bacterial populations in different types of 
geographically dispersed marine environments.



How is a UNIFRAC Distance Calculated?



UniFrac metric. 
The unique fraction metric, or UniFrac, measures the 
phylogenetic distance between sets of taxa in a 
phylogenetic tree as the fraction of the branch length of the 
tree that leads to descendants from either one environment 
or the other, but not both (Fig. 1). This measure thus 
captures the total amount of evolution that is unique to each 
state, presumably reflecting adaptation to one environment 
that would be deleterious in the other. rRNA is used purely 
as a phylogenetic marker, indicating the relative amount of 
sequence evolution that has occurred in each environment.



Sum of Length of All Unique Branches

Sum of Length of All Branches



Unifrac calculation

FIG. 1. 
Calculation of the UniFrac distance metric. Squares, triangles, 
and circles denote sequences derived from different 
communities. Branches attached to nodes are colored black if 
they are unique to a particular environment and gray if they 
are shared. (A) Tree representing phylogenetically similar 
communities, where a significant fraction of the branch length 
in the tree is shared (gray). (B) Tree representing two 
communities that are maximally different so that 100% of the 
branch length is unique to either the circle or square 
environment. (C) Using the UniFrac metric to determine if the 
circle and square communities are significantly different. For n 
replicates (r), the environment assignments of the sequences 
were randomized, and the fraction of unique (black) branch 
lengths was calculated. The reported P value is the fraction of 
random trees that have at least as much unique branch length 
as the true tree (arrow). If this P value is below a defined 
threshold, the samples are considered to be significantly 
different. (D) The UniFrac metric can be calculated for all 
pairwise combinations of environments in a tree to make a 
distance matrix. This matrix can be used with standard 
multivariate statistical techniques such as UPGMA and 
principal coordinate analysis to compare the biotas in the 
environments. 



Intuitively, if two environments are similar, few adaptations would be needed to transfer 
from one community to the other. Consequently, most nodes in a phylogenetic tree 
would have descendants from both communities, and much of the branch length in the 
tree would be shared (Fig. 1A). In contrast, if two communities are so distinct that an 
organism adapted to one could not survive in the other, then the lineages in each 
community would be distinct, and most of the branch length in the tree would lead to 
descendants from only one of the two communities (Fig. 1B).



Like the P test and the FST test, UniFrac can be used to determine whether two communities 
differ significantly by using Monte Carlo simulations. Two communities are considered 
different if the fraction of the tree unique to one environment is greater than would be 
expected by chance. We performed randomizations by keeping the tree constant and 
randomizing the environment that was assigned to each sequence in the tree (Fig. 1C). 



UniFrac can also be used to produce a distance matrix describing the pairwise phylogenetic 
distances between the sets of sequences collected from many different microbial communities (Fig. 
1D). We compared two samples by removing from the tree all sequences that were not in either 
sample and computing the UniFrac for each reduced tree. Standard multivariate statistics, such as 
UPGMA clustering (9) and principal coordinate analysis (23), can then be applied to the distance 
matrix to allow comparisons between the biotas in different environments (Fig. 1D).



Methods





Data analysis.We implemented UniFrac and associated analyses in Python 2.3.4 and ran all 
calculations on a Macintosh G4 computer running OSX 10.3.8. All code is available at http://
bayes.colorado.edu/unifrac.zip. We implemented UPGMA clustering (9) and principal 
coordinate analysis (23) as described previously. 

We downloaded small-subunit-rRNA sequences generated in the 12 different studies of 
marine environments (Table 1) from GenBank, imported them into the Arb package (26), and 
aligned them using a combination of the Arb auto-aligner and manual curation. Because 
several studies used bacterium-specific primers, we excluded all nonbacterial sequences 
from the analysis. We added the aligned sequences to a tree representing a range of 
phylogenetic groups from the Ribosomal Database Project II (29) by Phil Hugenholtz (15). 
This sequence addition used the parsimony insertion tool and a lane mask (lanemaskPH) 
supplied in the same database so that only phylogenetically conserved regions were 
considered. We exported the tree from Arb and annotated each sequence with 1 of 20 
sample designations (Table 1). We then performed significance tests, UPGMA clustering, 
and principal coordinate analysis using UniFrac.

http://bayes.colorado.edu/unifrac.zip
http://bayes.colorado.edu/unifrac.zip


Jackknifing.We used jackknifing to determine how the number and evenness of sequences in 
the different environments affected the UPGMA clustering results. Specifically, we repeated the 
UniFrac analysis with trees that contained only a subset of the sequences and measured the 
number of times we recovered each node that occurred in the UPGMA tree from the full data 
set. In each simulation, we evaluated 100 reduced trees in which all of the environments were 
represented by the same specified number of sequences, using sample sizes of 17, 20, 31, 36, 
40, and 58 sequences. These thresholds reflect the sample sizes from different environments 
in our original data set. If an environment had more than the specified number of sequences, 
we removed sequences at random; environments with fewer sequences were removed from 
the tree entirely.



Results

Results



We used 
UniFrac to 
determine which 
of the microbial 
communities 
represented by 
the 20 different 
samples were 
significantly 
different (Table 
2)



and as the 
basis for a 
distance matrix 
to cluster the 
samples using 
UPGMA (Fig. 
2) 



FIG. 3. First four principal 
coordinates from a principal 
coordinate analysis of marine 
samples. Samples from marine ice 
are represented by diamonds, 
sediment samples are represented 
by circles, and water samples are 
represented by squares. Shapes 
representing samples de- rived 
from cultured isolates are open, 
and those representing samples 
from environmental clones are 
filled. The percentages in the axis 
labels represent the percentages of 
variation explained by the 
principal co- ordinates. 



ship between cultured isolates and environmental clone se-
quences derived from the same locations for sediment (SNC4
and SNU3), seawater (WTC11 and WTU10), and ice from
both the Arctic (IRC17 and IRU16) and Antarctic (INC19 and
INU18) (see Table 1 for an explanation of sample abbrevia-
tions). We also included additional cultured samples from sea-

water (WTC9) and cultured and uncultured samples from ice
(INC15 and INU20).

Cultured and uncultured sea ice bacteria cluster with each
other and with the other cultured isolates (Fig. 2). This asso-
ciation is well supported by jackknife values (Table 3). The
node that groups the cultured and uncultured ice samples
together (Fig. 2, N10) is recovered 100% of the time, with 58
sequences per sample (note that at this point only five of the six
ice samples are still in the tree because one sample has only 20
sequences). Pairwise significance tests for differences between
environments further support this observation (Table 2). The
cultured component of the Antarctic ice sample (INC19) does
not differ significantly from environmental clones from the
same sample (INU18).

In contrast, bacteria cultured from sediment (SNC4) and
seawater (WTC11 and WTC9) cluster with other cultured sam-
ples rather than with environmental clones from the same
studies (SNU3 and WTU10) in the UPGMA tree. This obser-
vation is again supported by jackknife values (Table 3). With
31 sequences, SNC4 clusters with the other cultured sequences
64% of the time (Table 3, N9) but never clusters with SNU3 or
exclusively with the sediment samples (data not shown). Like-
wise, with 36 sequences per sample, WTC9 clusters with other
cultured sequences 96% of the time (Table 3, N10). In addi-
tion, pairwise significance tests (Table 2) show that the cultur-
able components of a seawater sample (WTC11) and a sedi-
ment sample (SNC4) differ significantly from the
environmental clone sequences from the same environment
(WTU10 and SNU3, respectively) but not from cultured sam-
ples from different environments.

The sequences of the culturable components of the seawater
and sediment samples most resemble the environmental clone
sequences from sea ice. This observation is best illustrated by
principal coordinate analysis (Fig. 3). In principal coordinate
analysis, a distance matrix is used to plot n samples in n-

FIG. 3. First four principal coordinates from a principal coordinate
analysis of marine samples. Samples from marine ice are represented
by diamonds, sediment samples are represented by circles, and water
samples are represented by squares. Shapes representing samples de-
rived from cultured isolates are open, and those representing samples
from environmental clones are filled. The percentages in the axis labels
represent the percentages of variation explained by the principal co-
ordinates.

TABLE 3. UPGMA jackknifing results

Node
% of trials with nodea

17 20 31 36 40 58

N1 3 14 31 27 12 NA
N2 8 1 29 33 48 63
N3 1 8 7 11 NA NA
N4 14 16 11 NA NA NA
N5 1 0 0 1 27 37
N6 27 36 57 67 53 63
N7 23 23 36 44 52 66
N8 22 17 17 39 31 37
N9 52 58 64 NA NA NA
N10 8 16 79 96 94 100
N11 6 12 40 46 NA NA
N12 13 31 NA NA NA NA
N13 16 38 41 38 64 79
N14 34 50 29 23 12 6
N15 69 77 NA NA NA NA
N16 18 40 27 28 28 21
N17 24 35 43 46 37 50
N18 97 NA NA NA NA NA

a For each node in the UPGMA tree (Fig. 2) (rows), the numbers show the
percentages of trials (n ! 100) that the node occurred in when each environment
was represented by only 17, 20, 31, 36, 40, or 58 sequences (columns). The node
names correspond to the node labels in Figure 2. NA, not available.
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FIG. 3. First four principal 
coordinates from a principal 
coordinate analysis of marine 
samples. Samples from marine ice 
are represented by diamonds, 
sediment samples are represented 
by circles, and water samples are 
represented by squares. Shapes 
representing samples de- rived 
from cultured isolates are open, 
and those representing samples 
from environmental clones are 
filled. The percentages in the axis 
labels represent the percentages of 
variation explained by the 
principal co- ordinates. 



We used jackknifing to assess confidence in the 
nodes of the UPGMA tree (Table 3). The results 
show biologically meaningful patterns that unite 
many individual observations in the literature and 
reveal several striking features of microbial 
communities in marine environments.





Results

Conclusions



Conclusion.The utility of UniFrac for making broad 
comparisons between the biotas of different environments 
based on 16S rRNA sequences has enormous potential to 
shed light on biological factors that structure microbial 
communities. The vast wealth of 16S rRNA sequences in 
GenBank and of environmental information about these 
sequences in the literature, combined with powerful 
phylogenetic tools, will greatly enhance our understanding of 
how microbial communities adapt to unique environmental 
challenges.


