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Profiling phylogenetic marker genes, such as the 16S rRNA gene, is a key tool for 
studies of microbial communities but does not provide direct evidence of a 
community’s functional capabilities. Here we describe PICRUSt (phylogenetic 
investigation of communities by reconstruction of unobserved states), a 
computational approach to predict the functional composition of a metagenome 
using marker gene data and a database of reference genomes. PICRUSt uses an 
extended ancestral-state reconstruction algorithm to predict which gene families are 
present and then combines gene families to estimate the composite metagenome. 
Using 16S information, PICRUSt recaptures key findings from the Human 
Microbiome Project and accurately predicts the abundance of gene families in host-
associated and environmental communities, with quantifiable uncertainty. Our 
results demonstrate that phylogeny and function are sufficiently linked that this 
‘predictive metagenomic’ approach should provide useful insights into the 
thousands of uncultivated microbial communities for which only marker gene 
surveys are currently available. 
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of PICRUSt was first evaluated using the set of 530 Human 
Microbiome Project (HMP) samples that were analyzed using both 
16S rRNA gene and shotgun metagenome sequencing22. Although a 
shotgun metagenome is itself only a subset of the underlying biologi-
cal metagenome, accurate prediction of its composition constitutes 
a critical test for PICRUSt. Human-associated microbes have been 
the subject of intensive research for decades, and the HMP alone 
has produced >700 draft and finished reference genomes, suggesting 
that the human microbiome would be a worthwhile benchmark for 
testing the accuracy of PICRUSt’s metagenome predictions. We tested 
the accuracy of PICRUSt by treating HMP metagenomic samples as a 
reference and calculating the correlation of PICRUSt predictions from 
paired 16S samples across 6,885 resulting KO groups.

PICRUSt predictions had high agreement with metagen-
ome sample abundances across all body sites (Spearman r = 0.82,  
P < 0.001; Fig. 2a and Supplementary Fig. 1). Using two synthetic 
communities from the HMP constructed from a set of known 
microorganisms34, we used PICRUSt to make predictions that 
were even more accurate for both communities (Spearman r = 0.9,  
P < 0.001; Supplementary Fig. 2). We also tested, as a targeted  
example, PICRUSt’s accuracy in specifically predicting the abun-
dance of glycosaminoglycan degradation functions, which are more 
abundant in the gut than elsewhere in the body31. Using the same 
differential enrichment analysis on both PICRUSt and metagenomic 
data yielded identical rankings across body sites and very similar 
quantitative results (Fig. 2b–f), suggesting that PICRUSt predictions 
can be used to infer biologically meaningful differences in functional 
abundance from 16S surveys even in the absence of comprehensive  
metagenomic sequencing.

Inferring host-associated and environmental metagenomes
We evaluated the prediction accuracy of PICRUSt in metagenomic 
samples from a broader range of habitats including mammalian 
guts14, soils from diverse geographic locations23 and a phylogeneti-
cally complex hypersaline mat community24,25. These habitats rep-
resent more challenging validations than the human microbiome, as 
they have not generally been targeted for intensive reference genome 
sequencing. Because PICRUSt benefits from reference genomes that 
are phylogenetically similar to those represented in a community, this 

evaluation allowed us to quantify the impact of increasing dissimilar-
ity between reference genomes and the metagenome.

To characterize this effect, we developed the nearest sequenced 
taxon index (NSTI) to quantify the availability of nearby genome rep-
resentatives for each microbiome sample (Online Methods). NSTI is 
the sum of phylogenetic distances for each organism in the OTU table 
to its nearest relative with a sequenced reference genome, measured 
in terms of substitutions per site in the 16S rRNA gene and weighted 
by the frequency of that organism in the OTU table. As expected, 
NSTI values were greatest for the phylogenetically diverse hypersa-
line mat microbiome (mean NSTI = 0.23 o 0.07 s.d.), lowest for the 
well-covered HMP samples (mean NSTI = 0.03 o 0.02 s.d.), mid-
range for the soils (mean NSTI = 0.17 o 0.02 s.d.) and varied for the 
mammals (mean NSTI = 0.14 o 0.06 s.d.) (Fig. 3). Also as expected, 
the accuracy of PICRUSt in general decreased with increasing NSTI 
across all samples (Spearman r = −0.4, P < 0.001) and within each 
microbiome type (Spearman r = −0.25 to −0.82, P < 0.05). For a sub-
set of mammal gut samples (NSTI < 0.05) and all of the soil samples 
that we tested, PICRUSt produced accurate metagenome predictions 
(Spearman r = 0.72 and 0.81, respectively, both P < 0.001). It should 
be noted that both the mammalian and hypersaline metagenomes 
were shallowly sequenced at a depth expected to be insufficient to 
fully sample the underlying community’s genomic composition, thus 
likely causing the accuracy of PICRUSt to appear artificially lower for 
these communities (see below). Although the lower accuracy on the 
hypersaline microbial mats community (Spearman r = 0.25, P < 0.001) 
confirms that PICRUSt must be applied with caution to the most novel 
and diverse communities, the ability to calculate NSTI values within 
PICRUSt from 16S data allows users to determine whether their  
samples are tractable for PICRUSt prediction before running an 
analysis. Moreover, the evaluation results verify that PICRUSt  
provides useful functional predictions for a broad range of environ-
ments beyond the well-studied human microbiome.

PICRUSt outperforms shallow metagenomic sequencing
These validations showed that other factors in addition to NSTI also 
influence PICRUSt accuracy. Because sequenced metagenomes were 
used as a proxy for the true metagenome in our control experiments, 
metagenome sequencing depth was an additional contributing factor 

Figure 1 The PICRUSt workflow. PICRUSt is 
composed of two high-level workflows: gene 
content inference (top box) and metagenome 
inference (bottom box). Beginning with a 
reference OTU tree and a gene content table 
(i.e., counts of genes for reference OTUs 
with known gene content), the gene content 
inference workflow predicts gene content for 
each OTU with unknown gene content, including 
predictions of marker gene copy number. This 
information is precomputed for 16S based on 
Greengenes29 and IMG26, but all functionality 
is accessible in PICRUSt for use with other 
marker genes and reference genomes. The 
metagenome inference workflow takes an OTU 
table (i.e., counts of OTUs on a per sample 
basis), where OTU identifiers correspond to tips 
in the reference OTU tree, as well as the copy 
number of the marker gene in each OTU and the 
gene content of each OTU (as generated by the 
gene content inference workflow), and outputs a 
metagenome table (i.e., counts of gene families 
on a per-sample basis).
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Figure 1 The PICRUSt workflow. PICRUSt is composed of two high-
level workflows: gene content inference (top box) and metagenome 
inference (bottom box). Beginning with a reference OTU tree and a gene 
content table (i.e., counts of genes for reference OTUs  
with known gene content), the gene content inference workflow predicts 
gene content for each OTU with unknown gene content, including 
predictions of marker gene copy number. This information is 
precomputed for 16S based on Greengenes and IMG, but all 
functionality is accessible in PICRUSt for use with other marker genes 
and reference genomes. The metagenome inference workflow takes an 
OTU table (i.e., counts of OTUs on a per sample basis), where OTU 
identifiers correspond to tips in the reference OTU tree, as well as the 
copy number of the marker gene in each OTU and the gene content of 
each OTU (as generated by the gene content inference workflow), and 
outputs a metagenome table (i.e., counts of gene families on a per-
sample basis). 
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to the (apparent) accuracy of PICRUSt. This is because sequenced 
metagenomes themselves are incomplete surveys of total under-
lying functional diversity. Indeed, we found that metagenome 

 sequencing depth for each sample correlated with PICRUSt accu-
racy (Spearman r = 0.4, P < 0.001), suggesting that samples with 
particularly low sequencing depth may be poor proxies for the com-
munity’s true metagenome and may lead to conservative estimates 
of PICRUSt accuracy (Supplementary Fig. 3). Similarly, we found 
a weak correlation between 16S rRNA gene sequencing depth and 
PICRUSt accuracy (Spearman r = 0.2, P < 0.001), also suggesting a 
statistically significant but numerically smaller impact on PICRUSt  
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Figure 3 PICRUSt accuracy across various environmental microbiomes. 
Prediction accuracy for paired 16S rRNA marker gene surveys and 
shotgun metagenomes are plotted against the availability of reference 
genomes as summarized by NSTI. Accuracy is summarized using the 
Spearman correlation between the relative abundance of gene copy 
number predicted from 16S data using PICRUSt versus the relative 
abundance observed in the sequenced shotgun metagenome. In the 
absence of large differences in metagenomic sequencing depth, relatively 
well-characterized environments, such as the human gut, had low NSTI 
values and can be predicted accurately from 16S surveys. Conversely, 
environments containing much unexplored diversity (e.g., phyla with 
few or no sequenced genomes), such as the Guerrero Negro hypersaline 
microbial mats, tended to have high NSTI values.
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Figure 2 PICRUSt recapitulates biological findings from the Human Microbiome Project. (a) Principal component analysis (PCA) plot comparing KEGG 
module predictions using 16S data with PICRUSt (lighter colored triangles) and sequenced shotgun metagenome (darker colored circles) along with relative 
abundances for five specific KEGG modules: (b) M00061: Uronic acid metabolism. (c) M00076: Dermatan sulfate degradation. (d) M00077: Chondroitin 
sulfate degradation. (e) M00078: Heparan sulfate degradation. (f) M00079: Keratan sulfate degradation. All KEGG modules are involved in glycosaminosglycan 
degradation (KEGG pathway ko00531) using 16S with PICRUSt (P) and whole genome sequencing (W) across human body sites. Color key is the same as in a.



Figure 2 PICRUSt recapitulates biological findings from the 
Human Microbiome Project. (a) Principal component analysis 
(PCA) plot comparing KEGG module predictions using 16S 
data with PICRUSt (lighter colored triangles) and sequenced 
shotgun metagenome (darker colored circles) along with 
relative abundances for five specific KEGG modules: (b) 
M00061: Uronic acid metabolism. (c) M00076: Dermatan 
sulfate degradation. (d) M00077: Chondroitin sulfate 
degradation. (e) M00078: Heparan sulfate degradation. (f) 
M00079: Keratan sulfate degradation. All KEGG modules are 
involved in glycosaminosglycan degradation (KEGG pathway 
ko00531) using 16S with PICRUSt (P) and whole genome 
sequencing (W) across human body sites. Color key is the 
same as in a. 
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to the (apparent) accuracy of PICRUSt. This is because sequenced 
metagenomes themselves are incomplete surveys of total under-
lying functional diversity. Indeed, we found that metagenome 
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Figure 3 PICRUSt accuracy across various environmental microbiomes. 
Prediction accuracy for paired 16S rRNA marker gene surveys and 
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genomes as summarized by NSTI. Accuracy is summarized using the 
Spearman correlation between the relative abundance of gene copy 
number predicted from 16S data using PICRUSt versus the relative 
abundance observed in the sequenced shotgun metagenome. In the 
absence of large differences in metagenomic sequencing depth, relatively 
well-characterized environments, such as the human gut, had low NSTI 
values and can be predicted accurately from 16S surveys. Conversely, 
environments containing much unexplored diversity (e.g., phyla with 
few or no sequenced genomes), such as the Guerrero Negro hypersaline 
microbial mats, tended to have high NSTI values.
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Figure 3 PICRUSt accuracy across various environmental 
microbiomes. Prediction accuracy for paired 16S rRNA marker gene 
surveys and shotgun metagenomes are plotted against the 
availability of reference genomes as summarized by NSTI. Accuracy 
is summarized using the Spearman correlation between the relative 
abundance of gene copy number predicted from 16S data using 
PICRUSt versus the relative abundance observed in the sequenced 
shotgun metagenome. In the absence of large differences in 
metagenomic sequencing depth, relatively well-characterized 
environments, such as the human gut, had low NSTI values and can 
be predicted accurately from 16S surveys. Conversely, environments 
containing much unexplored diversity (e.g., phyla with few or no 
sequenced genomes), such as the Guerrero Negro hypersaline 
microbial mats, tended to have high NSTI values. 
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predictions (Supplementary Fig. 4). This is likely because propor-
tionally more sequencing is needed to profile functional diversity 
than phylogenetic diversity.

To test the relationship between sequencing depth and accuracy, 
we used rarefaction analysis of the soil data set to assess the effects of 
subsampling either the 16S rRNA genes (for PICRUSt predictions) 

or the shotgun metagenomic data (Fig. 4). We found that PICRUSt 
predictions converged rapidly with increasing sequencing depth and 
reached a maximum accuracy with only 105 16S sequences assigned 
to OTUs per sample (final Spearman r = 0.82, P < 0.001). This suggests 
that PICRUSt predictions could be performed on 16S data even from 
shallow sequencing (including many clone library/Sanger data sets) 

with little loss of accuracy. At this sequenc-
ing depth, subsamples from the full metagen-
ome were very poor (though still significant) 
predictors of overall metagenome content 
(Spearman r = 0.18, P < 0.001). Approximately 
15,000 annotated metagenomic sequences 
per sample were required before being able 
to provide the same accuracy as PICRUSt 
with 105 assigned 16S reads. Accounting for 
the percent of genes surviving annotation 
(17.3% of metagenomic reads) or closed- 
reference OTU-picking (68.9% of post-
QC 16S reads), this analysis indicates that 
PICRUSt may actually outperform metage-
nomic sequencing for read depths below 
~72,000 total sequences per sample. Although 
most metagenomes exceed this threshold, it is 
worth noting that 16.7% (411/2,462) of bacte-
rial and archaeal whole genome sequencing 
samples in MG-RAST as of November 2012 
are reported as containing fewer than 72,000 
sequences. Our results clearly demonstrate 

Figure 4 Accuracy of PICRUSt prediction compared with shotgun 
metagenomic sequencing at shallow sequencing depths. Spearman 
correlation between either PICRUSt-predicted metagenomes (blue lines) 
or shotgun metagenomes (dashed red lines) using 14 soil microbial 
communities subsampled to the specified number of annotated 
sequences. This rarefaction reflects random subsets of either the full 
16S OTU table (blue) or the corresponding gene table for the sequenced 
metagenome (red). Ten randomly chosen rarefactions were performed at 
each depth to indicate the expected correlation obtained when assessing 
an underlying true metagenome using either shallow 16S rRNA gene 
sequencing with PICRUSt prediction or shallow shotgun metagenomic 
sequencing. The data label describes the number of annotated reads 
below which PICRUSt-prediction accuracy exceeds metagenome 
sequencing accuracy. Note that the plotted rarefaction depth reflects 
the number of 16S or metagenomic sequences remaining after standard 
quality control, dereplication and annotation (or OTU picking in the case 
of 16S sequences), not the raw number returned from the sequencing 
facility. The number of total metagenomic reads below which PICRUSt 
outperforms metagenomic sequencing (72,650) for this data set was 
calculated by adjusting the crossover point in annotated reads (above) using annotation rates for the soil data set (17.3%) and closed-reference OTU 
picking rates for the 16S rRNA data set (68.9%). The inset figure illustrates rapid convergence of PICRUSt predictions given low numbers of annotated 
reads (blue line).
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Figure 5 PICRUSt prediction accuracy across 
the tree of bacterial and archaeal genomes. 
Phylogenetic tree produced by pruning the 
Greengenes 16S reference tree down to those 
tips representing sequenced genomes. Height 
of the bars in the outermost circle indicates 
the accuracy of PICRUSt for each genome 
(accuracy: 0.5–1.0) colored by phylum, with 
text labels for each genus with at least 15 strains. 
PICRUSt predictions were as accurate for 
archaeal (mean = 0.94 o 0.04 s.d., n = 103) as  
for bacterial genomes (mean = 0.95 o 0.05 s.d., 
n = 2,487).
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predictions (Supplementary Fig. 4). This is likely because propor-
tionally more sequencing is needed to profile functional diversity 
than phylogenetic diversity.

To test the relationship between sequencing depth and accuracy, 
we used rarefaction analysis of the soil data set to assess the effects of 
subsampling either the 16S rRNA genes (for PICRUSt predictions) 

or the shotgun metagenomic data (Fig. 4). We found that PICRUSt 
predictions converged rapidly with increasing sequencing depth and 
reached a maximum accuracy with only 105 16S sequences assigned 
to OTUs per sample (final Spearman r = 0.82, P < 0.001). This suggests 
that PICRUSt predictions could be performed on 16S data even from 
shallow sequencing (including many clone library/Sanger data sets) 

with little loss of accuracy. At this sequenc-
ing depth, subsamples from the full metagen-
ome were very poor (though still significant) 
predictors of overall metagenome content 
(Spearman r = 0.18, P < 0.001). Approximately 
15,000 annotated metagenomic sequences 
per sample were required before being able 
to provide the same accuracy as PICRUSt 
with 105 assigned 16S reads. Accounting for 
the percent of genes surviving annotation 
(17.3% of metagenomic reads) or closed- 
reference OTU-picking (68.9% of post-
QC 16S reads), this analysis indicates that 
PICRUSt may actually outperform metage-
nomic sequencing for read depths below 
~72,000 total sequences per sample. Although 
most metagenomes exceed this threshold, it is 
worth noting that 16.7% (411/2,462) of bacte-
rial and archaeal whole genome sequencing 
samples in MG-RAST as of November 2012 
are reported as containing fewer than 72,000 
sequences. Our results clearly demonstrate 

Figure 4 Accuracy of PICRUSt prediction compared with shotgun 
metagenomic sequencing at shallow sequencing depths. Spearman 
correlation between either PICRUSt-predicted metagenomes (blue lines) 
or shotgun metagenomes (dashed red lines) using 14 soil microbial 
communities subsampled to the specified number of annotated 
sequences. This rarefaction reflects random subsets of either the full 
16S OTU table (blue) or the corresponding gene table for the sequenced 
metagenome (red). Ten randomly chosen rarefactions were performed at 
each depth to indicate the expected correlation obtained when assessing 
an underlying true metagenome using either shallow 16S rRNA gene 
sequencing with PICRUSt prediction or shallow shotgun metagenomic 
sequencing. The data label describes the number of annotated reads 
below which PICRUSt-prediction accuracy exceeds metagenome 
sequencing accuracy. Note that the plotted rarefaction depth reflects 
the number of 16S or metagenomic sequences remaining after standard 
quality control, dereplication and annotation (or OTU picking in the case 
of 16S sequences), not the raw number returned from the sequencing 
facility. The number of total metagenomic reads below which PICRUSt 
outperforms metagenomic sequencing (72,650) for this data set was 
calculated by adjusting the crossover point in annotated reads (above) using annotation rates for the soil data set (17.3%) and closed-reference OTU 
picking rates for the 16S rRNA data set (68.9%). The inset figure illustrates rapid convergence of PICRUSt predictions given low numbers of annotated 
reads (blue line).
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Figure 5 PICRUSt prediction accuracy across 
the tree of bacterial and archaeal genomes. 
Phylogenetic tree produced by pruning the 
Greengenes 16S reference tree down to those 
tips representing sequenced genomes. Height 
of the bars in the outermost circle indicates 
the accuracy of PICRUSt for each genome 
(accuracy: 0.5–1.0) colored by phylum, with 
text labels for each genus with at least 15 strains. 
PICRUSt predictions were as accurate for 
archaeal (mean = 0.94 o 0.04 s.d., n = 103) as  
for bacterial genomes (mean = 0.95 o 0.05 s.d., 
n = 2,487).
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the value of deep metagenomic sequencing, 
but also show that the number of sequences 
recovered per sample in a typical 16S survey 
(including those using Sanger sequencing) is 
more than sufficient to generate high-quality 
predictions from PICRUSt.

Functional and phylogenetic 
determinants of PICRUSt accuracy
We further tested and optimized the genome 
prediction step of PICRUSt using addi-
tional information from sequenced refer-
ence genomes (Supplementary Results 
and Supplementary Figs. 5–9). The pre-
diction accuracy of PICRUSt was largely 
consistent across diverse taxa throughout 
the phylogenetic tree of archaea and bacte-
ria (Fig. 5). Notably, PICRUSt predictions 
were as accurate for archaeal (mean = 0.94 o  
0.04 s.d., n = 103) as for bacterial genomes  
(mean = 0.95 o 0.05 s.d., n = 2,487). Most of the 
variation seen across groups was due to dif-
ferences in their representation by sequenced 
genomes. For example, of the 40 taxonomic 
families that had an associated accuracy 
<0.80, each of these families had at most six 
sequenced members, whereas the 53 families  
with a predicted accuracy >0.95 had on average 30 sequenced  
representatives. This coincides with our findings that the accuracy 
of PICRUSt at both the genome and metagenome levels depends on 
having closely sequenced relatives with accurate annotations.

Analysis of PICRUSt predictions across functional groups (Fig. 6 
and Supplementary Fig. 10) revealed that, as a positive control, core or 
housekeeping functions, such as genetic information processing, were 
most accurately predicted (mean accuracy = 0.99 o 0.03 s.d.). Conversely, 
gene families that are variable across genomes and more likely to be lat-
erally transferred, such as those in environmental information process-
ing, had slightly lower accuracy (mean accuracy = 0.95 o 0.04 s.d.). The 
subcategories of this group predicted least accurately were membrane-
associated and therefore expected to change rapidly in abundance in 
response to environmental conditions35. Such functional categories also 
typically show large differences in relative abundance between similar 
communities (e.g., metal cation efflux36 and nickel/peptide transport-
ers19) and are enriched for lateral gene transfer21,37. However, even 
these more challenging functional groups were accurately predicted by 
PICRUSt (min. accuracy = 0.82), suggesting that our inference of gene 
abundance across various types of functions was reliable.

Biological insights from the application of PICRUSt
As a final illustration of PICRUSt’s computational efficiency and ability  
to generate biological insights, we applied PICRUSt to three large 
16S data sets. In the first example, all 6,431 16S samples from the 

HMP were analyzed to predict metagenomes using PICRUSt, requir-
ing <10 min of runtime on a standard desktop computer. One of the 
many potential applications of such data is in functionally explain-
ing shifts in microbial phylogenetic distributions between distinct 
habitats. Previous culture-based studies had detected higher fre-
quencies of aerobic bacteria in the supragingival plaque relative to 
subgingival plaque38, and an analysis of HMP 16S rRNA sequences 
detected taxonomic differences between these two sites39. Analysis of 
the PICRUSt-predicted HMP metagenomes revealed an enrichment 
in the metabolic citrate cycle (M00009) genes in supragingival plaque 
samples in comparison to subgingival plaque (P < 1e-10; Welch’s t-test 
with Bonferroni correction), supporting previous claims that aerobic 
respiration is more prevalent in the supragingival regions38.

In the second example, we applied PICRUSt to generate functional 
predictions for ecologically critical microbial communities associated 
with reef-building corals. The system under study is subject to an 
experimental intervention simulating varying levels of eutrophication 
and overfishing40. One hypothesis to explain the role of algae in the 
global decline of coral populations posits that eutrophication favors 
algal growth, which in turn increases dissolved organic carbon (DOC) 
loads. DOC favors overgrowth of fast-growing opportunist microbes 
on the surface of coral, outcompeting more-typical commensal 
microbes, depleting O2 (ref. 15) and ultimately causing coral disease 
or death. This is known as the dissolved organic carbon, disease, algae 
and microbes model41 (although direct algal toxicity through secreted 
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Figure 6 Variation in inference accuracy across 
functional modules within single genomes. 
Results are colored by functional category and 
sorted in decreasing order of accuracy within 
each category (indicated by triangular bars,  
right margin). Note that accuracy was >0.80 
for all, and therefore the region 0.80–1.0 is 
displayed for clearer visualization of differences 
between modules.
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