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A primary aim of microbial ecology is to determine patterns and 
 drivers of community distribution, interaction, and assembly amidst 
complexity and uncertainty. Microbial community composition has 
been shown to change across gradients of environment, geographic 
distance,  salinity, temperature, oxygen, nutrients, pH, day length, 
and biotic factors1–6 . These patterns have been identified mostly by 
 focusing on one sample type and region at a time, with insights extra-
polated across environments and geography to produce generalized 
 principles. To assess how microbes are distributed across environments 
 globally—or whether microbial community dynamics follow funda-
mental ecological ‘laws’ at a planetary scale—requires either a massive 
monolithic cross-environment survey or a practical methodology for 
coordinating many independent surveys. New studies of microbial 
environments are rapidly accumulating; however, our ability to extract 
meaningful information from across datasets is outstripped by the rate 
of data  generation. Previous meta-analyses have suggested robust gen-
eral trends in community composition, including the importance of 
 salinity1 and animal association2. These findings, although derived 
from relatively small and uncontrolled sample sets, support the util-

ity of meta-analysis to reveal basic patterns of microbial diversity and 
suggest that a scalable and accessible analytical framework is needed.

The Earth Microbiome Project (EMP, http://www.earthmicrobiome.
org) was founded in 2010 to sample the Earth’s microbial communities 
at an unprecedented scale in order to advance our understanding of the 
organizing biogeographic principles that govern microbial commu-
nity structure7 ,8 . We recognized that open and collaborative  science, 
including scientific crowdsourcing and standardized methods8, would 
help to reduce technical variation among individual studies, which 
can overwhelm biological variation and make general trends difficult 
to detect9 . Comprising around 100 studies, over half of which have 
yielded peer-reviewed publications (Supplementary Table 1), the EMP 
has now dwarfed by 100-fold the sampling and sequencing depth of 
 earlier meta-analysis efforts1,2; concurrently, powerful analysis tools 
have been developed, opening a new and larger window into the distri-
bution of microbial diversity on Earth. In establishing a scalable frame-
work to catalogue microbiota globally, we provide both a resource for 
the exploration of myriad questions and a starting point for the guided 
acquisition of new data to answer them. As an example of using this 
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Our growing awareness of the microbial world’s importance and diversity 
contrasts starkly with our limited understanding of its fundamental 
structure. Despite recent advances in DNA sequencing, a lack of 
standardized protocols and common analytical frameworks impedes 
comparisons among studies, hindering the development of global inferences 
about microbial life on Earth. Here we present a meta-analysis of microbial 
community samples collected by hundreds of researchers for the Earth 
Microbiome Project. Coordinated protocols and new analytical methods, 
particularly the use of exact sequences instead of clustered operational 
taxonomic units, enable bacterial and archaeal ribosomal RNA gene 
sequences to be followed across multiple studies and allow us to explore 
patterns of diversity at an unprecedented scale. The result is both a 
reference database giving global context to DNA sequence data and a 
framework for incorporating data from future studies, fostering 
increasingly complete characterization of Earth’s microbial diversity. 
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tool, we present a meta-analysis of the EMP archive, tracking individual 
sequences across diverse samples and studies with standardized envi-
ronmental descriptors, investigating large-scale ecological patterns, 
and exploring key hypotheses in ecological theory to serve as seeds 
for future research.

A standardized and scalable approach
The EMP solicited the global scientific community for environmen-
tal samples and associated metadata spanning diverse environments 
and capturing spatial, temporal, and/or physicochemical covariation. 
The first 27,751 samples from 97 independent studies (Supplementary 
Table 1) represent diverse environment types (Fig. 1a), geographies 
(Fig. 1b), and chemistries (Extended Data Fig. 1). The EMP encom-
passes studies of bacterial, archaeal, and eukaryotic microbial  diversity. 
The analysis here focuses exclusively on the bacterial and archaeal 
components of the overall database (for concision, use of ‘microbial’ 
will hereafter refer to bacteria and archaea only). Associated meta-
data included environment type, location information, host taxonomy  
(if relevant), and physico chemical measurements (Supplementary  
Table 2). Physicochemical measurements were made in situ at the time 
of sampling. Investigators were encouraged to measure temperature 
and pH at minimum. Salinity, oxygen, and inorganic nutrients were 
measured when possible, and investigators collected additional meta-
data pertinent to their particular investigations.

Metadata were required to conform to the Genomic Standards 
Consortium’s MIxS and Environment Ontology (ENVO) standards10,11. 
We also used a light-weight application ontology built on top of ENVO: 
the EMP Ontology (EMPO) of microbial environments. EMPO was 
 tailored to capture two major environmental axes along which micro-
bial beta-diversity has been shown to orient: host association and 
 salinity1,2. We indexed the classes in this application ontology (Fig. 1a) 
as levels of a structured categorical variable to classify EMP samples as 
host-associated or free-living (level 1). Samples were categorized within 
those classes as animal-associated versus plant-associated or saline 
 versus non-saline, respectively (level 2). A finer level (level 3) was then 
assigned that satisfied the degree of environment granularity sought 
for this meta-analysis (for example, sediment (saline), plant rhizos-
phere, or animal distal gut). We expect EMPO to evolve as new studies 

and sample types are added to the EMP and as additional  patterns of 
beta-diversity are revealed.

We surveyed bacterial and archaeal diversity using amplicon 
sequencing of the 16S rRNA gene, a common taxonomic marker for 
bacteria and archaea12 that remains a valuable tool for microbial  ecology 
despite the introduction of whole-genome methods (for  example, 
shotgun metagenomics) that capture gene-level functional diversity13. 
DNA was extracted from samples using the MO BIO PowerSoil DNA 
extraction kit, PCR-amplified, and sequenced on the Illumina platform. 
Standardized DNA extraction was chosen to minimize the potential 
bias introduced by different extraction  methodologies; however, extrac-
tion efficiency may also be subject to interactions between sample 
type and cell type, and thus extraction effects should be considered 
as a  possible confounding factor in interpreting results. We amplified 
the 16S rRNA gene (V4 region) using primers14 shown to recover 
sequences from most bacterial taxa and many archaea15. We note that 
these primers may miss newly discovered phyla with alternative riboso-
mal gene structures16, and subsequent modifications not used here have 
shown improved efficiency with certain clades of Alphaproteobacteria 
and Archaea17–19. We  generated sequence reads of 90–151 base pairs 
(bp) (Extended Data Fig. 2a, Supplementary Table 1), totaling 2.2 
 billion sequences, an average of 80,000 sequences per sample.

Sequence analysis and taxonomic profiling were done initially using 
the common approach of assigning sequences to operational taxonomic 
units (OTUs) clustered by sequence similarity to existing rRNA data-
bases14,20. While this approach was useful for certain analyses, for many 
sample types, especially plant-associated and free-living communities, 
one-third of reads or more could not be mapped to existing rRNA 
databases (Extended Data Fig. 2b). We therefore used a reference-free 
method, Deblur21, to remove suspected error sequences and provide 
single-nucleotide resolution ‘sub-OTUs’, also known as ‘amplicon 
sequence variants’22, here called ‘tag sequences’ or simply ‘sequences’. 
Because Deblur tag sequences for a given meta-analysis must be the 
same length in each sample, and some of the EMP studies have read 
lengths of 90 bp, we trimmed all sequences to 90 bp for this meta- 
analysis. We verified that the patterns presented here were not adversely 
affected by trimming the sequences (Extended Data Fig. 3). As we show, 
90-bp sequences were sufficiently long to reveal detailed patterns of 
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Figure 1  | Environment type and provenance of samples. a, The EMP 
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up to neutral pH36 and often to decrease above neutral pH3,35 in soil 
communities. Richness has been shown to increase with tempera-
ture up to a limit and then to decrease beyond that limit in seawater 
 (maximum at about 19 °C)33 and to increase with temperature in soil 
(up to at least around 26 °C)36. However, general relationships of rich-
ness to temperature and pH remain unresolved37. Here, across  samples 
from non-host-associated environments where pH or temperature were 
measured (mostly freshwater and soil environments), richness was 
greatest near neutral pH (around 7) and relatively cool temperatures 
(about 10 °C) (Fig. 2b). We observed apparent upper bounds on richness 
with both temperature and pH that were best fit by two-sided exponen-
tial (Laplace) curves. Thus, the present dataset suggests that maximum 
microbial richness occurs within a relatively narrow range of interme-
diate pH and temperature values. These patterns, while robust in the 
context of the EMP dataset, necessarily reflect only the subset of sam-
ple types for which variables were measured (Supplementary Table 2);  
they should therefore be interpreted with caution. Understanding 
universal relationships between richness and environmental factors 
will require information from more studies with detailed and carefully 
collected physicochemical metadata.

Beyond measured physical covariates, the breadth of environments 
in the EMP catalogue allows a detailed exploration of how microbial 

diversity is distributed across environments. Diversity among commu-
nities (beta-diversity) is driven by turnover (replacement of taxa) and 
nestedness (gain or loss of taxa resulting in differences in richness)38. If 
turnover dominates, then disparate communities will harbour unique 
taxa. If nestedness dominates, then communities with fewer taxa will 
be subsets of communities with more taxa. We tested for nestedness 
using a 2,000-sample subset with even representation across environ-
ments and studies. Given the contrasting environments and geographic 
separation among the many studies in the EMP, we expected different 
environments to contain unique sets of taxa and to show little nest-
edness. However, we found that communities across environments 
were significantly nested (Fig. 3a, b; P <  0.05) in comparison to null 
models (Fig. 3c), accounting for the observed patterns of richness. At 
coarse taxonomic levels, an average of 84% of phyla, 73% of classes, and 
58% of orders that occurred in less diverse samples also occurred in 
more diverse samples. Nestedness was observed even when the most 
prevalent taxa were removed and was robust across randomly chosen 
subsets of samples (Extended Data Fig. 6). These patterns could have 
resulted from several mechanisms, including ordered extinctions39 
and the filtering of complex communities over time40, differential  
dispersal abilities41 and cascading source–sink colonization processes 
that assemble nested subsets from more complex communities, or by 
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Figure 2 | Alpha-diversity, beta-diversity, and predicted average 16S 
rRNA gene copy number. a, Within-community (alpha) diversity, 
measured as number of observed 90-bp tag sequences (richness), in 
n =  23,828 biologically independent samples as a function of environment 
(per-environment n shown in Fig. 1a), with boxplots showing median, 
interquartile range (IQR), and 1.5 ×  IQR (with outliers). Tag sequence 
counts were subsampled to 5,000 observations. Yellow line indicates the 
median number of observed tag sequences for all samples in that set of 
boxplots. Free-living communities of most types exhibited greater richness 
than host-associated communities. b, Tag sequence richness (as in a) 
versus pH and temperature in n =  3,986 (pH) and n =  6,976 (temperature) 
biologically independent samples. Black points are the 99th percentiles 
for richness across binned values of pH and temperature. Laplace (two-
sided exponential) curves captured apparent upper bounds on microbial 
richness and their peaked distributions better than Gaussian curves. 

Greatest maximal richness occurred at values of pH and temperature 
that corresponded to modes of the Laplace curves. Maximum richness 
exponentially decreased away from these apparent optima. c, Between-
community (beta) diversity among in n =  23,828 biologically independent 
samples: principal coordinates analysis (PCoA) of unweighted UniFrac 
distance, PC1 versus PC2 and PC1 versus PC3, coloured by EMPO levels 2 
and 3. Clustering of samples could be explained largely by environment.  
d, 16S rRNA gene average copy number (ACN, abundance-weighted) 
of EMP communities in n =  23,228 biologically independent samples, 
coloured by environment. EMPO level 2 (left): animal-associated 
communities had a higher ACN distribution than plant-associated 
and free-living (both saline and non-saline) communities. Right: soil 
communities had the lowest ACN distribution, while animal gut and saliva 
communities had the highest ACN distribution.
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the tendency of larger habitat patches to support more rare taxa with 
lower prevalence42. Notably, finer taxonomic groupings showed less 
nestedness (Fig. 3c), indicating that the processes that underlie nested 
patterns of turnover are likely to reflect conserved aspects of micro-
bial biology, and not to result from the interplay of diversification and  
dispersal on short timescales.

These global ecological patterns offer a glimpse of what is possible 
with coordinated and cumulative sampling—in addition to the specific 
questions addressed by individual studies, context is built and easily 
queried across studies. They also necessarily highlight the inherent 
limitations to decentralized studies, especially regarding the collection 
of comparable environmental data. Future studies will be able to use 
the current EMP data as a starting point for more explicit tests of broad 
ecological principles, both to identify gaps in current knowledge and 
to more confidently plan large directed studies with sufficient power 
to fill them.

A more precise and scalable catalogue
An advantage of using exact sequences is that they enable us to observe 
and analyse microbial distribution patterns at finer resolution than is 
possible with traditional OTUs. As an example, we applied a Shannon 
entropy analysis to tag sequences and higher taxonomic groups 
to measure biases in the distribution of taxa. Taxa that are equally 
likely to be found in any environment will have high entropy and low 
 specificity, whereas taxa found only in a single environment will have 
low entropy and high specificity (note that we use ‘specificity’ solely to 
denote distributional patterns, not to imply adaptation or causality).  
Tag sequences exhibited high specificity for environment, with 
 distributions skewed towards one or a few environments (low Shannon 
entropy); by  contrast, higher taxonomic levels tended to be more evenly 
distributed across environments (high Shannon entropy, low speci-
ficity) (Fig. 4a). Entropy distributions across all tag sequences at each 
taxonomic level show that this pattern is general (Fig. 4b). Seeking a 
more precise measure of the divergence at which a taxon is specific for 
environments, we next investigated how entropy changes as a function 
of phylogenetic distance. We calculated entropy for each node of the 

phylogeny and visualized it as a function of maximum tip-to-tip branch 
length (Fig. 4c). While entropy decreased gradually at finer phyloge-
netic resolution, it dropped sharply at the tips of the tree. We conclude 
that environment specificity is best captured by individual 16S rRNA 
sequences, below the typical threshold defining microbial species (97% 
identity of the 16S rRNA gene).

The EMP dataset provides the ability to track individual sequences 
across the Earth’s microbial communities. Using a representative subset 
of the EMP (Extended Data Fig. 7a), we produced a table of sequence 
counts and distributions, including among environments (EMPO) and 
along environmental gradients (pH, temperature, salinity, and oxygen). 
From this we generated ‘EMP Trading Cards’, which promote explora-
tion of the dataset and here highlight the distribution patterns of three 
prevalent or environment-correlated tag sequences (Extended Data  
Fig. 7b, Supplementary Table 3). The entire EMP catalogue can be que-
ried using the Redbiom software, with command-line (https://github.
com/biocore/redbiom) and web-based (http://qiita.microbio.me)  
interfaces to find samples based on sequences, taxa, or sample meta-
data, and to export selected sample data and metadata (instructions at 
https://github.com/biocore/emp). User data generated from the EMP 
protocols can be readily incorporated into this framework: because 
Deblur operates independently on each sample21, additional tag 
sequences can be added to this dataset from new studies  without repro-
cessing existing samples. Future combinations of datasets  targeting the 
same genomic region but sequenced using different methods may be 
admissible but would require considerations to account for methodo-
logical biases.

The growing EMP catalogue is expected to have applications for 
research and industry, with tag sequences used as environmental 
 indicators and representing targets for cultivation, genome  sequencing, 
and laboratory study. In addition, these tools and approaches, although 
developed for bacteria and archaea, could be expanded to all domains 
of life43. To achieve greater utility for the EMP and similar projects, 
we must continually improve metadata collection and curation, 
 ontologies, support for multi-omics data, and access to computational 
resources.
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Conclusions and future directions
Here we have used crowdsourced sample collection and standardized 
microbiome sequencing and metadata curation to perform a global 
meta-analysis of bacterial and archaeal communities. Using exact 
sequences in place of OTUs and a learned structure of microbial envi-
ronments, we have shown that agglomerative sampling can reveal 
basic biogeographic patterns of microbial ecology, with resolution 
and scope rivaling data compilations currently available for ‘macrobial’ 
 ecology44,45 . Our results point to key organizing principles of micro-
bial communities, with less-rich communities nested within richer 
communities at higher taxonomic levels, and environment  specificity   
becoming much more evident at the level of individual 16S rRNA 
sequences.

The EMP framework and global synthesis presented here represent 
value added to the scientific community beyond the substantial contri-
butions of the constituent studies (Supplementary Table 1). However, 
as with any meta-analysis in which data are gathered primarily in 
 service of separate questions rather than a single theme46, conclusions 
should be viewed with caution and form starting points for future 
 hypothesis-directed investigations. There is a need to span gradients 
of geography (for example, latitude and elevation) and chemistry (for 
example, temperature, pH, and salinity) more evenly—assisted by tools 
for more comprehensive collection and curation of metadata—and to 
track environments over time. In addition, biotic factors (for example, 
animals, fungi, plants, viruses, and eukaryotic microbes) not meas-
ured in this study have important roles in determining community 
 structure4–6. The scalable framework introduced here can be expanded 
to address these needs: new studies to fill gaps in physicochemical space, 
amplicon data for microbial eukaryotes and viruses, and whole-genome 
and whole-metabolome profiling. At a time when both academic and 

governmental agencies increasingly recognize the value of  communal 
biodiversity monitoring efforts47,48, the EMP  provides one  example of 
a logistically feasible standardization framework to maximize inter-
operability across diverse and independent studies, in particular 
using stable identifiers (exact sequences) to enable enduring utility 
of environmental sequence data. Given current global sequencing  
efforts, the use of coordinated protocols and submission to this and 
other public databases should allow rapid accumulation of new data, 
providing an ever more diverse reference catalogue of microbes and 
microbiomes on Earth.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Figure 4 | Specificity of sequences and higher taxonomic groups for 
environment. a, Environment distribution in all genera and 400 randomly 
chosen tag sequences, drawn from n =  2,000 biologically independent 
samples with even representation across environments (EMPO level 3)  
and studies. Each bar depicts the distribution of environments for a 
taxon (not relative abundance of taxa): bars composed mostly of one 
colour (environment) are specific for that environment, as seen with tag 
sequences; bars composed of many colours are more cosmopolitan, as  
seen with genera. Tag sequences were more specific for environment than 
were genera and higher taxonomic levels. b, Shannon entropy within  
each taxonomic group (minimum 20 tag sequences per group) and for the 
same set of samples with permuted taxonomy labels. Box plots show  

median, IQR, and 1.5  ×  IQR (with outliers) for each taxonomic level.  
A violin plot shows the entropy of tag sequences (minimum 10 samples 
per tag sequence). Specificity for environment occurred predominantly 
below the genus level. c, Shannon entropy within phylogenetic subtrees 
of tag sequences (minimum 20 tips per subtree) defined by maximal 
tip-to-tip branch length (substitutions per site) and for the same samples 
with permuted phylogenetic tree tips. Mean and 20th/80th percentile 
for a sliding window average of branch length is shown. Violin plot for 
tag sequences as in b. Dotted lines show average tip-to-tip branch length 
corresponding to 97% sequence identity and taxonomic levels displayed in 
b. The greatest decrease in entropy was between the lowest branch length 
subtree tested and tag sequences.
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Extended Data Figure 1 | Physicochemical properties of the EMP 
samples. Pairwise scatter plots of available physicochemical metadata 
are shown for temperature, salinity, oxygen, and pH, and for phosphate, 
nitrate, and ammonium. Histograms for each factor are also shown; the 
number (n) of samples having data for each factor is provided at the  

top of each histogram. Samples are coloured by environment, and only  
QC-filtered samples are included. In sample metadata files, environmental 
factors are named in our recommended format, with analyte name and 
units combined in the metadata field name.
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Extended Data Figure 2 | Sequence length, database effects, and 
beta-diversity patterns. a, Median sequence length per study after 
quality trimming. Original EMP studies used 90-bp reads, which were 
replaced by 100-bp reads for the majority of studies, and have since 
been replaced by 150–151-bp reads. For most analyses presented in this 
manuscript, we used the Deblur algorithm and trimmed tag sequences 
to 90 bp. This allowed inclusion of older studies with shorter read 
lengths. b, Comparison of Greengenes and SILVA rRNA databases for 
reference-based OTU picking. Fraction of reads in n =  23,828 biologically 
independent samples—separated by environment (per-environment n 
shown in Fig. 1a)—mapping to Greengenes 13.8 and SILVA 123 (97% 
identity OTUs) with closed-reference OTU picking. Boxplots show 
median, IQR, and 1.5 ×  IQR (with outliers). The fraction of reads mapping 
was similar between Greengenes and SILVA in each environment but 

slightly higher with SILVA for every environment. c, Alpha-diversity in 
closed-reference OTUs picked against Greengenes 13.8 and SILVA 123, 
with sequences rarefied to 100,000, 30,000, 10,000, and 1,000 sequences 
per sample, displayed as boxplots showing median, IQR, and 1.5 ×  IQR 
(with outliers). The sample set for all calculations contained n =  4,667 
biologically independent samples having at least 100,000 observations in 
both Greengenes and SILVA OTU tables. Alpha-diversity metrics were 
higher with SILVA closed-reference OTU picking than with Greengenes.  
d, Beta-diversity among all EMP samples using principal coordinates 
analysis (PCA) of weighted UniFrac distance. Principal coordinates PC1 
versus PC2 and PC1 versus PC3 are shown coloured by EMPO levels 
2 and 3. As with unweighted UniFrac distance (Fig. 2c), clustering of 
samples using weighted UniFrac distance could be explained largely by 
environment.
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Extended Data Figure 3 | Sequence length effects on observed diversity 
patterns. The effect of trimming from 150 bp (the approximate starting 
length of some sequences) to 90 bp (the trimmed length of all sequences 
in this meta-analysis) was investigated by comparing alpha- and beta-
diversity patterns. All samples, at each sequence length, were rarefied to 
5,000 sequences per sample. a, Alpha-diversity distributions of n =  12,538 
biologically independent samples displayed as histograms of observed tag 

sequences coloured by environment (EMPO level 3). Among these samples 
with sequence length ≥  150 bp, the distributions are largely preserved 
when trimming from 150 to 100 to 90 bp. b, Procrustes goodness-of-fit 
between the 90-bp (grey lines) and 150-bp (black lines) Deblur principal 
coordinates (unweighted UniFrac distance) for n =  200 randomly chosen 
samples coloured by environment (EMPO level 2). Beta-diversity patterns 
between the two sequence lengths are similar.
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Extended Data Figure 4 | Tag sequence prevalence patterns. Note that 
for this meta-analysis, the input observation table was filtered to keep 
only tag sequences with at least 25 observations total over all samples and 
then rarefied to 5,000 observations per sample. a, Per-study endemism 
visualized as a histogram of tag sequences binned by the number of  
studies in which they are observed (right: linear scale; left: log scale).  
b, Per-sample endemism visualized as a histogram of tag sequences binned 
by the number of samples in which they are observed (right: sample 
counts up to 92 samples and the number of tag sequences in linear scale; 
left: all tag sequences with bin widths of 100 samples and number of tag 
sequences in log scale). c, Abundance (total observations in rarefied table) 
versus prevalence (number of samples observed in) of n =  307,572 tag 
sequences. Both axes are log scale. The most prevalent tag sequences were 
also the most abundant. d, Prevalence as a function of sequencing depth 

in n =  2,279 soil, n =  478 saltwater, n =  1,508 freshwater, and n =  695 
animal distal gut samples having at least 50,000 sequences per sample. 
Shown are the average and s.d. of mean prevalence across triplicate 
rarefied subsamples of 50, 100, 500, 1,000, 5,000, 10,000, and 50,000 
sequences per sample. Average prevalence increases with sequencing 
depth, and the straight-line relationship on the log–log axis is suggestive 
of a power law. e, Histograms of tag sequence prevalences at each sampling 
depth. The histograms show the distribution moving towards higher 
prevalences with increasing sequencing depth. Gut data lacked tag 
sequence prevalences >  0.7 owing to the inclusion of very different host 
species; see f. f, Histograms as in e but on a subset of the observation tables 
where 30 samples were randomly sampled from each study. Restricting to 
human gut samples only, the full range of prevalences found in the other 
environments is observed.
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Extended Data Figure 5 | See next page for caption.
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Extended Data Figure 5 | Environmental effect sizes, sample 
classification, and correlation patterns. a, Effect sizes of predictors 
on alpha- and beta-diversity. Maximum pairwise effect size (difference 
between means divided by standard deviation) between categories of 
each predictor plotted for observed tag sequences (alpha-diversity) and 
unweighted and weighted UniFrac distance (beta-diversity). Response 
variables (alpha- and beta-diversity) were derived from the QC-filtered 
subset of the 90-bp Deblur table containing n =  23,828 biologically 
independent samples. Numeric predictor variables were converted to 
quartiles (categorical predictors). Categories within each predictor 
had a minimum of 75 samples per category. b, Cumulative variation 
explained by the optimal model of stepwise redundancy analysis (RDA) 
of predictors: study ID, EMPO level 3, ENVO biome level 3, latitude, and 
longitude (predictors with values for less than half of samples, including 
host scientific name, were excluded). Environment (EMPO level 3) and 
biome (ENVO biome level 3) explained as much variation as study ID 
when study ID was excluded from the RDA. c, Confusion matrix for 
random forest classifier of samples to environment (EMPO level 3).  
The classifier was trained on the 2,000-sample subset, which was then 
tested on the remaining samples (QC-filtered samples minus 2,000-sample 
subset). Squares are coloured relative to 100 classification attempts for 
each true label. Overall success rate was 84%, with the most commonly 
misclassified sample environments being Surface (non-saline), Animal 
secretion, Soil (non-saline), and Aerosol (non-saline). d, Receiver 

operating characteristic (ROC) curve for classification of samples to 
environment (EMPO level 3). The AUC (area under curve) indicates the 
probability that the classifier will rank a randomly chosen sample of the 
given class higher than a randomly chosen sample of other classes.  
e, Classification success, using a random forest classifier, to EMPO  
levels 1–3, ENVO material, ENVO feature, and ENVO biome levels 1–3.  
f, Microbial source tracking: mean predicted proportion of tag sequences 
from each source environment (EMPO level 3) that occurs in each sink 
environment. The model was trained on a subset of samples (∼ 20% of 
each environment), and tested to predict tag sequence source composition 
in all remaining samples. Aerosol (non-saline), Surface (saline), and 
Hypersaline samples were not included in this analysis because there were 
insufficient sample numbers. g, Microbial source tracking: which other 
environments a sample type most resembles. The model was trained on 
all source environments except one using a leave-one-out cross-validated 
model, and then used to classify each sample included in that group. 
Hence, the predicted classification proportion of environment X to 
environment X is zero. h, Correlation of microbial richness with latitude. 
Richness of 16S rRNA tag sequences per sample across EMPO level 2 
environmental categories as a function of absolute latitude. Samples from 
studies that span at least 10° latitude are highlighted in colour, with linear 
fits displayed per-study as matching coloured lines. Samples from studies 
with narrower latitudinal origins are shown in grey. The global fit for all 
samples per category is indicated by a dashed black line.
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Extended Data Figure 6 | NODF scores of nestedness across samples 
by taxonomic level. The NODF statistic represents the mean, across 
pairs of samples, of the fraction of taxa occurring in less diverse samples 
that also occur in more diverse samples. A raw NODF of 0.5 would 
mean that for any pair of samples, on average 50% of the taxa in the 
less diverse sample would occur in the more diverse sample. a, NODF 
(raw) and NODF standardized effect size in the 2,000-sample subset by 
taxonomic level. Results are shown first for all tag sequences and then for 
tag sequences found in < 10%, <  5%, and < 1% of samples. By removing 
the most prevalent tag sequences before analysis (and rarefying only after 
this step), it was possible to rule out artefacts associated with potential 

contamination. NODF (raw) is highest at the phylum level and decreases 
at finer taxonomic levels, and this trend is observed even when the 
most prevalent tag sequences are removed (removing those occurring 
in ≥  10%, ≥  5%, or ≥  1% of samples). The decreasing trend is likely to be 
partially due to finer taxonomic groups having lower prevalence (and 
lower matrix fill, among other factors) than coarser taxonomic groups, 
as standardized effect sizes of the NODF statistic are essentially constant 
across taxonomic levels. b, When five alternate 2,000-sample subsets are 
randomly drawn (with replacement) from the full (QC-filtered) EMP 
dataset, the trends in NODF (raw) and NODF standardized effect size 
remain largely unchanged.
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Extended Data Figure 7 | Subsets and EMP trading cards. a, Subsets of 
the EMP dataset with even distribution across samples and studies. Shown 
are all EMP samples included in this manuscript (release 1), the QC-
filtered subset, and subsets of 10,000, 5,000, and 2,000 samples. The latter 
three contain progressively more even representation across environments 
and studies, providing a more representative view of the Earth 
microbiome and a more lightweight dataset. Top, histograms of samples 
per environment (EMPO level 3) for each subset. Bottom, histograms of 
studies per environment (EMPO level 3) for each subset. b, EMP trading 
cards: distribution of 16S rRNA tag sequences across the EMP. Trading 
cards highlight the power of the EMP dataset to help define niche ranges 
of individual microbial sequence types across the planet’s microbial 
communities. Cards show distribution of 16S rRNA tag sequences in 
a 2,000-sample subset of the EMP (rarefied to 5,000 observations per 
sample) having even distribution by environment (EMPO level 3) and 
study. Taxonomy is from Greengenes 13.8 and Ribosomal Database 
Project (RDP), with the fraction of exact RDP matches by lineage and 
species name shown in parentheses. The pie chart and point plot show the 

relative distribution of environments in which the tag sequence is found 
(left points) versus the environment distribution of all 2,000 samples 
(right points). The coloured scatter plots indicate tag sequence relative 
abundance (normalized to the shared y axis) as a function of metadata 
values (no points shown indicates that metadata were not provided for 
that category). For comparison, grey curves with rug plots indicate kernel 
density estimates of metadata values across all samples in the set of 2,000 
(not just samples where the tag sequence was found). Three examples are 
shown. Left, a prevalent sequence enriched in soil and plant rhizosphere 
is from the class Acidobacteria, aptly named as this sequence is found at 
highest relative abundance in low-pH samples. Middle, the sequence  
most specific for animal surface (also enriched in animal secretion) is 
annotated as Pasteurella multocida, a common cause of zoonotic infections 
following bites or scratches by domestic animals, such as cats and dogs83. 
Right, the sequence most specific for animal proximal gut belongs to  
S24 -7, a family highly localized to the gastrointestinal tracts of 
homeothermic animals and predominantly found in herbivores and 
omnivores, but not in carnivores84 .
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