Microbiome studies involving sports, especially non-contact sports, have yet to become a focus of basic or clinical research. Studying indoor track facilities and the athletes that use them has the potential to demonstrate human effects on the microbiome of a built environment and reciprocated effects of the built environment on the human microbiome; this using a group of individuals thought to be near the pinnacle of health, yet potentially transiently immunocompromised by their physical exertions.
The sport of athletics, which encompasses the disciplines of track and field, road running, cross country running and race walking, is one of the most popular and participated in sports worldwide. Although the much of exercise/training and athletic events are performed outdoors, there are in fact entire disciplines within the sport specifically designated for indoor competition. Outdoor environments used for athletics training can vary drastically from between -20 ºF and 100 ºF depending upon the season if one is located in temperate climates such as those found in the USA and Europe. Fluctuations of elevation, precipitation and humidity can be just as drastic. Most indoor track facilities aim to keep a ‘comfortable’ environment, yet comfort can vary drastically and the difference between indoor and outdoor environments at a given location may be significant.
I hypothesize that the microbiome of indoor track facilities changes seasonally (correlating with climate and human-use patterns) and that individual indoor track facilities have specific microbiome signatures. I also hypothesize that there is a detectable difference in the nostril and/or salivary microbiome of runners who train at indoor track facilities versus those who train outdoors during the winter in a temperate climate (Boston, MA, USA) and that this difference correlates with the microbiome of the indoor training facility used.
I will collect microbial samples from air, touch and non-touch surfaces from 5 indoor track facilities in the Greater Boston area along with salivary and nostril samples from athletes who use the sampled facilities as well as a control group of athletes that remain training outdoor during the winter. Six locations within each track (the air, three touch surfaces and two non-touch surfaces) will be sampled at seven time points that best represent the full athletic training cycle of indoor-track-facility use (August, November, December, January, February, March and May). Nostril and salivary microbiome collections will be done in October (all outdoors), February (half indoors), and May (all outdoors) from 40 adult runners in the Greater Boston area. The 20 runners who participate in indoor training/racing will be from local track clubs that utilize the indoor facilities that are part of the study. The 20 runners who refrain from indoor track use will be from the November Project (Boston chapter); November Project members train outdoor year round in the Greater Boston Area regardless of the outdoor weather.
If interested in a bit of background on why sport arena/athlete microbiomes may be important and why taking salivary and nostril samples may give interesting microbial insights: Two studies by Meadow et al. in 2013 and 2014 suggest bacterial communities of indoor environments vary with human contact and that sports can serve setting through which to study microbial dispersal. This year Gagnon et al. studied immunological effects of temperature changes during acute exercise, during which they demonstrated that (in general) inflammatory responses are blunted when exertion (running) is performed at 30ºF as opposed to 70ºF. Also this year Frese et al. demonstrated that athletes during physical exertion, but not at rest, have decreased salivary flow rates and pH changes relative to inactive controls, which correlated with dental erosion/cavities (which are catalyzed by bacteria…usually Streptococcus and Lactobacillus). Lastly, Engebretsen et al. in 2013 published the full report of injuries and illnesses sustained during the 2012 London Olympic Games; from which they noted that 7% of athletes developed an illness during the competitions. Of note, the only sport to have disciplines contested at indoor and outdoor venues was cycling (track and road), and the illness rate of track cyclists was 9.6% while for road cyclists it was 3.3%.
I’m honored that the Alfred P. Sloan Foundation decided to fund my project and look forward to the study which will begin in July 2015 (hosted by Dr. Katherine Lemon at the Forsyth Institute in Cambridge, MA, USA).
Meadow et al. (2014), Bacterial Communities on Classroom Surfaces Vary with Human Contact. Microbiome, 2:7. doi:10.1186/2049-2618-2-7
Meadow et al. (2013), Significant Changes in the Skin Microbiome Mediated by the Sport of Roller Derby. PeerJ 1:e53.
Gagnon DD et al. (2014) The Effects of Cold Exposure on Leukocytes, Hormones and Cytokines during Acute Exercise in Humans. PLoS ONE 9(10): e110774. DOI: 10.1371/journal.pone.0110774
Frese, C. et al. (2014), Effect of Endurance Training on Dental Erosion, Caries, and Saliva. Scandinavian Journal of Medicine & Science in Sports. DOI: 10.1111/sms.12266
Engebretsen et al. (2013), Sports injuries and illnesses during the London Summer Olympic Games 2012. Br J Sports Med 2013;47:407—414. doi:10.1136/bjsports-2013-092380
Very cool! I was a competitive track and field athlete for six years, competing outdoors in the spring and indoors in the winter. Really looking forward to seeing the results of your work!
Embriette, thank you for comment/support! The coaches from Greater Boston Track Club and New Balance Boston have given me the ‘okay’ to solicit their athletes; each group works out at a different track facility in Greater Boston. The coaches were also very enthusiastic about helping with the research (probably because of time lost to training from illnesses and such that they’ve seen over the years). The leaders of November Project, which is an interesting group of athletes in case others want to look at dispersal, colonization or contact-mediated exchange in a group setting, have also given me the ‘okay’ to recruit as well. For this study we will have to exclude people with confounding issues (allergies and such) because some are known to throw off nostril microbiome already, but hopefully we can get a good group to sample and have great metadata to match/sift through!
I wonder if you could convince the people studying the rugby player microbiome to consider looking at the rugby facilities as a contributing factor in their work (they attributed the differences seen in rubgy players vs others to exercise – see http://phylogenomics.blogspot.com/2014/06/please-make-it-stop-overselling.html for example)
Spot on Jonathan; the ever-present attempts to oversell microbiome and misconstrue correlation/causation.
I’m glad you have a Twitter post from Bernat in your original blog post…Bernat and I happen to be members of the same running club in Cambridge. Maybe I can get him to sign up to be part of our indoor/outdoor track study!
Maybe you could see if you have any leftover microbiome(s) shared with Bernat